
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Solving Scheduling Problems
Using Evolutionary Algorithm

David Moidl
Open Informatics, Artificial Intelligence
moidldav@fel.cvut.cz

January 2015
Supervisor: Ing. Jiří Kubalík, Ph.D.

Acknowledgement / Declaration
I would like to thank my supervisor,

Ing. Jiří Kubalík, Ph.D., for numerous
consultations and useful insights and
ideas on the topic.

Prohlašuji, že jsem předloženou prá-
ci vypracoval samostatně a že jsem
uvedl veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze dne 5.1.2015

v

Abstrakt / Abstract
Ačkoli to nemusí být na první pohled

zřejmé, rozvrhování sportovních utkání
často není vůbec jednoduchá práce. Ve
skutečnosti je občas překvapivě těžké
vytvořit optimální turnaj i pro hru se
zdánlivě jednoduchými pravidly.

Jedním z takto obtížných problémů
z domény rozvrhování sportovních
utkání je Traveling Tournament Pro-
blem (TTP). Ten vychází z tvorby
turnajů pro baseballovou ligu v USA
a je znám pro svou kombinatorickou
obtížnost.

V této práci jsme navrhli novou me-
todu pro řešení TTP založenou na hyb-
ridním genetickém algoritmu jejíž hlavní
komponentou je tzv. expanzní operátor.
Poté jsme navrhli a provedli řadu výpo-
četních experimentů, vyhodnotili jsme
je a výsledky jsme porovnali s ostatními
přístupy nalezenými v literatuře.

Analyzovali jsme získaná data a do-
spěli jsme k závěru, že klíčový prvek na-
šeho algoritmu, expanzní operátor, fun-
guje velmi dobře. Avšak jeho zakompo-
nování do zbytku algoritmu způsobilo,
že tento přestal pracovat optimálně, což
mělo značný vliv na celkovou výkonnost.

Nakonec jsme navrhli několik kroků,
které bychom mohli realizovat v bu-
doucnu, a o nichž si myslíme, že by
pomohly našemu algoritmu dosáhnout
výsledků srovnatelných s těmi, které
dávají současné state-of-the-art heuris-
tiky.

Překlad titulu: Řešení rozvrhovacího
problému pomocí evolučního algoritmu

Even though it might not be ap-
parent, scheduling of various sport
tournaments is not at all an easy job.
In fact, some games with seemingly
simple rules pose surprisingly difficult
challenge when the aim is to create an
optimal schedule.

One of the very challenging sports-
scheduling problems is the Traveling
Tournament Problem (TTP). It ab-
stracts features of major league baseball
in the United States and is known for
its high combinatorial complexity.

In this work, we propose a new ap-
proach for solving TTP based on hybrid
genetic algorithm main feature of which
is a novel expansion operator. Then
we conduct series of extensive compu-
tational experiments and evaluate their
results which we compare to results of
other approaches from the literature.

We analyze results of our approach
and conclude that the key component—
the expansion operator—works very
well, but when incorporated into the
rest of the algorithm, it causes it to
function non-optimally which has no-
ticeable effect on its performance.

Finally, we propose actions to be
taken in the future which we believe
would help our algorithm to achieve
results comparable to those of current
state-of-the-art approaches.

Keywords: Traveling Tournament,
TTP, Genetic Algorithm, Constraint
Satisfaction, CSP, Domains

vi

Contents /
1 Introduction .1
1.1 Motivation .1
1.2 Aims of this thesis2
1.3 Organization .2

2 TTP — Problem definition
and related work3

2.1 Used terminology and back-
ground of the problem3

2.2 Problem definition3
2.3 Problem representation4
2.4 Criterion function5
2.5 Other variants of the TTP6

2.5.1 Mirrored Traveling
Tournament Problem
(mTTP) .6

2.5.2 Relaxed Traveling
Tournament Problem6

2.5.3 Non-Round-Robin
Tournament Problem6

2.6 Related work .6
2.6.1 Single-solution ap-

proaches .7
2.6.2 Population-based ap-

proaches 10
3 Genetic Algorithms. 13
3.1 Population and fitness 13

3.1.1 Genotype 13
3.1.2 Phenotype 13
3.1.3 Fitness. 14

3.2 General scheme of GA 14
3.3 Genetic operators 14

3.3.1 Selection. 14
3.3.2 Crossover 16
3.3.3 Mutation 17
3.3.4 Replacement 17

3.4 Memetic algorithms 18
3.4.1 General scheme 18
3.4.2 Local optimization

techniques 19
4 Proposed approach 20
4.1 Introduction . 20
4.2 Representation 20
4.3 GA component 22

4.3.1 Initialization 22
4.3.2 Fitness. 22
4.3.3 Selection. 22

4.3.4 Crossover 22
4.3.5 Mutation 22
4.3.6 Replacement 24

4.4 Chromosome expansion. 24
4.4.1 General overview. 24
4.4.2 Domains 24
4.4.3 Building the tourna-

ment . 25
4.5 Local optimization compo-

nent . 28
4.5.1 Overview 28
4.5.2 Local neighborhoods 29
4.5.3 Incorporation of local

search into the algo-
rithm . 32

4.6 Implementation notes 34
5 Experiments . 35
5.1 Test data . 35
5.2 Choosing parameters 35

5.2.1 Population 35
5.2.2 Selection. 36
5.2.3 Crossover 36
5.2.4 Mutation 36
5.2.5 Replacement 37
5.2.6 Local search 37

5.3 Experimental setup 37
5.3.1 Structure of our exper-

iments . 37
5.3.2 Experimental environ-

ment . 38
5.4 Results and discussion 38

5.4.1 Observed metrics 38
5.4.2 Results for NL instances . 39
5.4.3 Results for Super in-

stances. 40
5.4.4 Discussion 41

6 Conclusion and future work 44
References . 45

A Experiment with mutations 47
B CD contents . 52

vii

Tables / Figures
5.1. Parameters chosen for run-

ning the experiments 38
5.2. Results for the NL family of

instances . 39
5.3. Comparison of our approach

with TTSA on NL instances. . . 39
5.4. Comparison of our approach

with CNTS on NL instances. . . 40
5.5. Comparison of our approach

with ACF on NL instances 40
5.6. Comparison of our approach

with LHH on NL instances 40
5.7. Results for the Super family

of instances . 40
5.8. Comparison of our approach

with LHH on Super instances . 41
5.9. Comparison of our approach

with TTILSopt on Super in-
stances . 41

2.1. A table representing the op-
timal solution of NL6 instance . .4

2.2. Illustration of “polygon
method” used to generate
round-robin tournaments 10

3.1. Pseudocode of the general GA . 15
3.2. Example of tournament se-

lection . 15
3.3. Example of roulette wheel

selection . 16
3.4. Illustration of one-point

crossover . 16
3.5. Pseudocode of general

memetic algorithm 18
4.2. Example of genotype of our

chromosome . 20
4.1. Pseudocode of our genetic

algorithm . 21
4.3. Illustration of block-swap

mutation . 23
4.4. Illustration of block-shuffle

mutation . 23
4.5. Illustration of block-

sequence-swap mutation 23
4.6. Illustration of guided-in-

block-swap mutation 24
4.7. Pseudocode of the expansion

operator . 25
4.8. Pseudocode of the transfor-

mation function inside the
expansion operator 26

4.9. Pseudocode of local search
component of our genetic al-
gorithm . 29

4.10. Example of SwapHomes
neighborhood 30

4.11. Example of SwapRounds
neighborhood 30

4.12. Example of SwapTeams
neighborhood 31

4.13. Application of Partial-
SwapRounds move and
necessary repair chain. 32

4.14. Application of Partial-
SwapTeams move and
necessary repair chain. 33

viii

5.1. Progression of average, medi-
an and best-so-far fitness on
instances NL10, NL12, NL14
and NL16 . 42

A.1. Result of experiment with
mutations for instance NL4 47

A.2. Result of experiment with
mutations for instance NL6 48

A.3. Result of experiment with
mutations for instance NL8 48

A.4. Result of experiment with
mutations for instance NL10 . . 49

A.5. Result of experiment with
mutations for instance NL12 . . 49

A.6. Result of experiment with
mutations for instance NL14 . . 50

A.7. Result of experiment with
mutations for instance NL16 . . 50

ix

Chapter 1
Introduction

1.1 Motivation
For many, “scheduling” is not the first word that comes to mind when you say “sports”.
It is much more likely that people would think about their favorite football teams or
players, yet sports and scheduling undeniably belong together.

There are several reasons why it is so. The most pragmatic one is that companies
profiting on today’s sport leagues (like organizers, internet broadcasters, television sta-
tions and other media) need the “best” schedule (the “hottest” teams playing each other
at the most interesting locations) to attract fans and viewers, since that’s how these
companies make money.

Another reason is that it’s actually beneficial to search for optimal schedules as better
schedule may lead to noticeable resource savings for some (or possibly all) of the teams
involved. A resource might be a fuel required to travel from one place to another,
which—when saved—doesn’t produce unnecessary pollution. Such a resource might
also be a time spent on the road which can be used to do something more productive,
like additional training or excersise before a match. But that’s only possible if the
journey is shorter and therefore closer to being optimal.

Last but not least is the fact that problems originating in sport scheduling often pose
quite a difficult challenge when the aim is to solve them to optimality. Interestingly
enough, optimization problems derived from sport leagues can be incredibly hard to
solve even if the rules of the game are seemingly quite simple.

An excellent example of such a problem is Traveling Tournament Problem (TTP)
which is an abstraction of major league baseball (MLB) of the United States. The
goal is to find the shortest possible double round-robin tournament (DRRT) which also
satisfies additional TTP constraints. After being defined for the first time in 2001 by
Easton, Nemhauser and Trick [1], TTP has proven to be a tough problem and being
such a challenge, it attracted number of researchers.

The complexity exhibited by the TTP might be sligtly unexpected. At first glance, it
resembles two problems that are known quite well: Traveling Salesman Problem (TSP)
and sports timetabling. The former is is pretty much a synonym for finding shortest
path through predefined set of locations. The latter is implicitly present in TTP through
the criteria imposed over resulting tournament. Even though both of these problems
(TSP and timetabling) are quite well known and many efficient approaches exist to
solve them, when combined together in a way TTP does it, they form a problem much
harder to solve. That’s probably why the problem has received noticeable amount of
attention from researchers who tried to tackle it with different approaches.

At the beginning, Easton, Nemhauser and Trick [1] tried exact methods like integer
linear programing or constraint programing, but soon after it was clear that TTP is too
much of a challenge for these methods. Especially when it came to bigger instances.
Others therefore used non-exact, typically (meta)heuristic approaches hoping that their

1

1. Introduction .
algorithms will be able to navigate efficiently in the vast space of posible solutions of
TTP instances and will eventually find the optimum.

To name some of these approaches, Anagnostopoulos et al. [2] used simmulated
annealing (SA) in 2006 and then Van Hentenryck and Vergados used it again in 2007
[3]. Also Lim et al. used SA (in combination with hill-climbing) to solve the problem.
Others [4], [5] have chosen different metaheuristic based on local search - tabu search.
And of course, there were yet other methods—population based—amongst which we
can find a hyper-heuristics [6], ant-colony optimization [7] or genetic algorithms [8].

We think that population-based metaheuristics, in contrast with metaheuristics based
on local search, were not exploited enough on the TTP and we want to change that by
proposing new hybrid genetic algorithm for solving the problem.

1.2 Aims of this thesis
The goals of this thesis are following:

1. Review and compare current state-of-the-art approaches for solving TTP.
2. Propose and implement new GA-based algorithm to solve TTP.
3. Design and conduct a series of computational experiments and use them to assess

performance of the aforementioned algorithm.
4. Compare experimental results with results of state-of-the-art approaches and con-

clude on the effectiveness and overall usability of the GA framework applied to TTP.

1.3 Organization
The rest of this work is organized as follows: chapter 2 presents formal definition of
the problem and reviews related work already done on this topic—including some of
the state-of-the-art approaches. In chapter 3 we review the GA framework on which
our method is based. The proposed algorithm itself is described in detail in chapter 4.
Chapter 5 then illustrates our experiments together with their results and compares
these results with outcomes of other approaches from the literature. Finally, chapter 6
concludes this work with summary of the most important findings learned through the
results of our experiments and provides an outlook on possible future work.

2

Chapter 2
TTP — Problem definition and related work

To be able to properly define the problem, let us first explain some of the often-used
terms from TTP-related terminology and briefly introduce the background of the task.
Let us remind that TTP is not an artificially constructed problem, it originates in a
real world since it abstracts scheduling of MLB tournaments.

2.1 Used terminology and background of the problem
Consider n teams, n being even. A round-robin tournament (RRT) is such a tournament
among the teams in which every team plays every other team exactly once. This
tournament consists of n−1 rounds each being composed of n/2 games. At each game,
one of the teams involved is said to play at home while the other plays away. Obviously,
the game is played at the venue of the home team while the away playing team is the
one who has to travel to opponents location.

A double round-robin tournament (DRRT) is an extension of simple round-robin
tournament consisting of 2n − 2 rounds in which every pair of teams plays exactly
twice—once at each teams venue.

Using the terminology defined in [1], when travelling from one place to another,
successive games played at home are called a home stand and consecutive games played
away are called a round trip. The number of consecutive games in a home stand/road
trip defines its length. These metrics are important since TTP imposes some special
constraints over them.

Venues of the teams are assumed to be different spatial locations. Distances between
these locations are given in a form of symmetric n×n matrix D. A single element Di,j

then corresponds to a distance between locations i and j.
At the very beginning of the tournament, all teams are positioned at their own venues.

When playing away, the team travels from its last position to the new one. At the very
end of the tournament, those teams, which played away in the last round, travel back
to their home venues.

2.2 Problem definition
Being familiar with the background and basic terminology of the TTP, we may now
properly define the problem.

Let us again have n teams, n even. Let us also have a distance matrix D and non-
negative integers u and l. Having this input, we can define the Traveling Tournament
Problem as a problem of finding a schedule amongst all the teams satisfying following
constraints:

3

2. TTP — Problem definition and related work .
1. Double round-robin constraint: the schedule has to be a valid DDRT amongst all n

teams
2. noRepeat constraint: it must hold that no pair of teams plays twice in two consecutive

rounds (i.e. there are no teams i and j such that i would play j and then j would
play i in the very next round)

3. atMost constraint: the length of any home stand and road trip is no less than l and
no more than u

The reader may now be slightly confused with the name of the atMost constraint.
Why name it atMost when both lower and upper bounds are given? The reason is
simple—even though TTP in its general form accepts both lower bound and upper
bound on the length of road trips and home stays, in practice it’s rarely used. The
most common scenario is that l is set to one and u is either a fixed constant or input
parameter greater or equal to one. With lower bound being virtually neglected and only
the upper bound affecting the problem, many researchers adopted the name atMost as
it more accurately reflects the nature of the constraint.

Since TTP is an optimization problem, it not only searches for a valid solution, but
also for the optimal one, hence it tries to minimize the total distance travelled by all
teams. To explain how exactly is this distance computed, we first need to describe the
representation of the problem.

2.3 Problem representation
It is very common (and this work makes no exception) that TTP schedule gets rep-
resented as a table (or a two-dimensional array when it comes to implementation).
There are two different ways how to organize things in such a table: either teams are
represented by rows and rounds as columns or the other way around. Both possi-
bilities are used in the literature. And even though it’s just a matter of perspective
(two-dimensional array can be interpreted either way), we like to think about the repre-
sentation as if teams were represented by rows and rounds by columns. For simplicity,
each team is assigned with a number from one to n which is then used as a unique
identifier of that team.

Formally, we represent the tournament by M , an m × n matrix of integers where n
is the (even) number of teams and m = 2 · (n − 1) is the minimal number of rounds
needed to constitute a valid DRRT. A single element x = Mi,j then represents one game
played by team i in round j. This value specifies both the opponent of team i and the
location at which the game is held. If x is positive, then team i plays team x at home.
However, if x is negative, then team i plays with team x at the venue of its opponent.

An example of actual representation of valid TTP solution is given in figure 2.1 which
depicts an optimal solution to an instance with six teams. The table therefore has six
rows and ten columns.

Team/Round R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Team 1 5 2 6 -3 -4 -6 3 4 -2 -5

Team 2 -6 -1 -5 4 5 -3 -4 6 1 3

Team 3 -4 5 4 1 -6 2 -1 -5 6 -2

Team 4 3 -6 -3 -2 1 5 2 -1 -5 6

Team 5 -1 -3 2 6 -2 -4 -6 3 4 1

Team 6 2 4 -1 -5 3 1 5 -2 -3 -4

Figure 2.1. A table representing the optimal solution of NL6 instance

4

. 2.4 Criterion function

Since this way of representing the tournament seems natural and is very straightfor-
ward, we are not the first to use it. Hence, our representation is practically the same
as in [2] or [9].

Knowing how the problem gets represented, lets now focus on the criterion function
of the TTP.

2.4 Criterion function
In section 2.2 we have already mentioned that TTP is an optimization problem and as
such it aims at finding an optimal solution amongst all the valid ones. We have also
noted that the criterion function, by which the quality of a single solution is measured,
is total distance travelled by all teams.

Having described the representation of a single solution (tournament), we can now
formally define the criterion function as follows:

Lets have n teams, the n×n distance matrix D and n×(2n−2) matrix M representing
the tournament. The total distance travelled by all teams according to this schedule is:

totalDistance =
n∑

t=1

2n−2∑
r=0

dist(t, r)

where

dist(t, r) =

0 if r = 0 and Mt,1 > 0
Dt,|Mt,1| if r = 0 and Mt,1 < 0
0 if 1 ≤ r < 2n− 2 and Mt,r > 0 and Mt,r+1 > 0
Dt,|Mt,r+1| if 1 ≤ r < 2n− 2 and Mt,r > 0 and Mt,r+1 < 0
D|Mt,r |,|Mt,r+1| if 1 ≤ r < 2n− 2 and Mt,r < 0 and Mt,r+1 < 0
D|Mt,r |,t if 1 ≤ r < 2n− 2 and Mt,r < 0 and Mt,r+1 > 0
0 if r = 2n− 2 and Mt,r > 0
D|Mt,r |,t if r = 2n− 2 and Mt,r < 0

The function dist describes a distance that has to be travelled by a specific team when
moving from one round to the next. A special case is the beginning of the tournament
(represented by variable r set to zero) at which all teams start at their home locations.
As a consequence, if a team is required to play away in the first round, the distance
from its home location to opponents location does count to the total distance of that
team. Furthermore, all teams must also return to their home locations after the last
round of the tournament (if they are not already there) and distance of that journey
also contributes to the resulting distance.

For example, lets examine the total distance traveled by Team 1 in figure 2.1. The
distance would be equal to 0+0+0+D1,3 +D3,4 +D4,6 +D6,1 +0+D1,2 +D2,5 +D5,1.
We can observe that three zeros at the beginning are caused by a home stand spanning
first three rounds. The rest of the formula corresponds to Team 1 traveling back and
forth amongst places of its opponents. The very last element D5,1 then captures the
fact that Team 1 had to return to its home location after the end of the tournament.

5

2. TTP — Problem definition and related work .
2.5 Other variants of the TTP

The problem we have just defined is the original form of TTP. However, over the years
several mutations of this original emerged and we will briefly introduce those of them
which are most likely to be encountered in the literature.

2.5.1 Mirrored Traveling Tournament Problem (mTTP)
The mTTP makes just a single, but very significant change to the definition of the
problem: the noRepeat constraint is replaced by newly introduced mirror constraint
which is defined as

Mt,r = −Mt,r+n−1 ∀t ∈ {1, . . . , n},∀r ∈ {1, . . . , n− 1}.

The mirrored double round-robin tournament is then such a tournament where every
team has to play every other team in first n− 1 rounds and in the other n− 1 rounds,
the same games are played but with reversed venues.

As a side note, the mTTP is not just an artificial modification of the original as it
reflects the structure of tournaments which is common in some countries.

2.5.2 Relaxed Traveling Tournament Problem
This variant of TTP was defined by Bao and Trick1) and relaxes the compactness of the
resulting tournament. That is achieved by introducing byes to the schedule allowing
teams not to play in a round. It is apparent that by allowing a team to skip a round,
the tournament may suddenly consist of more than 2n− 2 rounds.

The number of byes per team is controlled by input parameter K. When K = 0,
the problem degenerates to classic TTP. Byes do not contribute to length of home
stays/road trips and are ignored when checking for the noRepeat constraint.

2.5.3 Non-Round-Robin Tournament Problem
The Non-Round-Robin Tournament Problem2) was formulated by Douglas Moody and
differs greatly from the original TTP.

The most important difference is the fact that teams do not play DRRT. Instead,
so-called “matchup” matrix is given which defines how many times each team has to
visit every other team. More specifically, the “matchup” matrix is n × n matrix of
non-negative integer numbers where each element Mi,j , i 6= j defines how many times
team i has to visit team j.

2.6 Related work
We have said already that TTP has gained quite a lot of attention, which is why
numerous papers have been written on the topic and multiple approaches have been
proposed. In this section, we review some of them and point out the key features
making these approaches efficient or interesting.

1) http://mat.gsia.cmu.edu/TOURN/relaxed/
2) http://mat.gsia.cmu.edu/TOURN/nonrr/

6

http://mat.gsia.cmu.edu/TOURN/relaxed/
http://mat.gsia.cmu.edu/TOURN/nonrr/

. 2.6 Related work

2.6.1 Single-solution approaches
Substantial portion of methods in the literature uses so-called single-solution approach.
Typically, these are based on local search and as such they operate on a single solution
(or configuration) which is modified via perturbation operator and either gets accepted
for next iteration or rejected. On following lines we review some of the most important
single-solution methods.

In 2006, four researchers—A. Anagnostopoulos, L. Michel, P. Van Hentenryck and
Y. Vergados—published a paper [2] in which they proposed algorithm for solving TTP
based on simulated annealing. Amongst several key features of their algorithm, there
are two we want to go into detail with, since these features has proved to be very
important and were adopted by many later on.

Hard and soft constraints: they separated the TTP constraints into two groups.
Hard constraints are those which ensure that produced solution will constitute a valid
DRRT. These constraints can’t be violated by any candidate solution (configuration)
generated by the algorithm. That results in much smaller search space—instead of
searching through all possible tournaments, the algorithm is only concerned with those
which represent a valid DRRT. On the other hand, produced candidate solutions are
free to violate the soft constraints. These are the noRepeat and atMost constraints.
Of course, a solution violating any of them would not represent a valid TTP solution,
therefore violations of soft constraints are penalized. The actual criterion function they
used then looks like this:

Cost(S) =
{

length(S) if nbv(S) = 0√
length(S)2 + [w · f(nbv(S))]2 otherwise ,

where S is the candidate solution, length(S) is the function computing total distance
of the solution (note that we use the very same representation as they did, so this
function is exactly the same as the one described in 2.4), nbv(S) stands for the number
of violations of soft constraints, w represents adaptive weight of these violations and f
is defined as

f(x) = 1 +
√

x · ln(x)
2 .

The reasoning behind chosen f was to penalize consecutive violations of soft constraints
by gradually smaller penalty. For example: one more violation on a schedule which
already violates five constraints doesn’t make much difference, but one more violation
on a schedule not violating any constraints is crucial as it suddenly makes that schedule
infeasible.

Local neighborhoods: since SA is a local search-based single-solution method, it needs
to have one or more local neighborhoods defined. These are then implemented in
the perturbation operator and allow the algorithm to move from one configuration to
another. Neighborhoods defined by Anagnostopoulos et al. seem to be one of the most
important parts of their work as they were used in nearly every other single-solution
method that was yet to come. We discuss these neighborhoods in detail in section 4.5
of chapter 4 as we use them as well—in fact, most of the local search component of our
algorithm is based on these principles.

7

2. TTP — Problem definition and related work .
One year later, in 2007, Van Hentenryck and Vergados proposed rather unusual

approach to the TTP [3]. Observant reader might wonder why we list this paper in
section dedicated to single-solution algorithms when it’s name is “Population-based
simulated annealing for traveling tournaments”. The reason is that despite its name
the paper still deals with single-solution method, yet it handles it in a special way.

Van Hentenryck and Vergados both cooperated on a paper released one year earlier
which we consider one of the most important works in the field of TTP [2]. In 2007, they
decided to reuse their work and solve TTP using the same algorithm (called TTSA),
but very differently. They introduced a “population” based method which, however,
didn’t work over population of candidate solutions, but rather over population of single-
solution search algorithms.

The idea was to maintain several TTSA instances and view each of them as a black-
box. These instances represented the population and were run in completely indepen-
dent fashion. The execution of all instances in a population was called a wave. Once all
of them were evaluated (the wave was completed), k best ones “survived” to the next
generation simply by not being terminated. The others were restarted from the best
solution they have each found during their runtime. This way, the most promising in-
stances were granted the longest running times while others were given another chance
by being restarted from the best solution they found.

The algorithm was implemented such that each TTSA instance was run in parallel.
And provided with cluster of servers to run at, it was able to find solutions of very high
quality which were in several cases better than the best-so-far solutions of that time.

Other single-solution method was proposed by Di Gaspero and Schaerf in 2007 [4].
They designed a tabu search algorithm for solving the TTP which uses almost the same
basic principles as the one developed by Anagnostopoulos et al.

These common features are:. search space consisting of valid double round-robin tournaments. concept of soft constraints—Di Gaspero and Schaerf called them H1 and H2 instead
of noRepeat and atMost respectively. in both papers, the local neighborhoods defined in [2] are used, yet Di Gaspero and
Schaerf altered the PartialSwapTeams and PartialSwapRounds a little

The criterion function, however, is a bit different. In this case, it consists of weighted
sum of number of violated constraints H1 and H2 and the travelled distance. Weights
are then set in such a way that constraint violations are always more significant than
the distance itself. Yet these weights are not fixed and get adapted during the search
to allow the algorithm to also search the infeasible regions of the search space.

Where both approaches differ greatly is the way of generating initial solutions. While
Anagnostopoulos et al. used quite simple recursive procedure, Di Gaspero and Schaerf
use more sophisticated strategy. They use so-called patterns which are tournaments
with unique placeholders (represented by integer numbers) for individual teams. Teams
are then randomly paired with placeholders and put at corresponding positions in the
tournament.

Patterns are created by solving a problem of finding 1-factorizations of a complete
graph Kn where n is (even) number of teams playing in the tournament. The aim is
to partition this graph in n − 1 sets of n/2 edges such that all edges in one set are
pairwise not adjacent. Such a set is called 1-factor and corresponds to one round in

8

. 2.6 Related work

the tournament. The arcs inside the set then each correspond to a single game of two
different teams.

The algorithm itself uses a tabu search metaheuristic. That means it maintains
so-called tabu list which is a collection of already visited states in the search space
preventing the algorithm from both getting stuck in local optima and cycling through
already visited places. Tabu search therefore needs a notion of equivalence between two
states in the search space to check whether a state was already visited or not.

To determine number of possible duplicities in the search space, the authors subjected
it to an in-depth analysis. They discovered that different local neighborhoods may in
some cases lead to the same states and tracked down the moves being responsible for
that. They discarded these moves from the algorithm and constructed their search
space using altered versions of aforementioned neighborhoods. This way they didn’t
loose any reachable state but reduced the number of duplicate states in the search
space.

Having reduced the search space, the authors ran a series of experiments according
to which their algorithm worked quite well. The average results were close to the best
known results of that time and shown that tabu search can be an efficient way to solve
TTP.

An interesting approach to tackle the TTP was chosen by Lim et al. in 2006 [10]
when these researchers designed an algorithm making use of both simulated annealing
and hill-climbing. Their strategy was to divide the search space into a timetable space
and a team assignment space. To be able to do so, they defined a concept of pattern
and used it quite heavily. A pattern is a string of length n (where n is the number
of teams in the instance) consisting of letters H and A which stand for “home” and
“away” respectively. This pattern then defines where the team assigned to it will play
at each round. A tournament is represented by a set of n patterns consistent with each
other. Consistency in this case means that when put together, these patterns would
fit the definition of a round-robin tournament. Initial solutions are then generated by
non-trivial three-phase approach which is designed to find just these sets.

Having the notion of pattern, the authors could define a timetable space in which
teams were fixedly assigned to individual patterns and the patterns themselves were
altered during the search. On the other hand, in the team assignment part of the search
space, the timetable was fixed and the assignment of teams to patterns was optimized.

Each part of the search space was then explored by different search algorithm—
simulated annealing component searched the timetable space while the team assignment
space was explored by a hill-climbing algorithm.

A controller unit then acts as a bridge between these two. According to Lim et
al., the controller invokes the SA component to create better timetables. These are
passed to the hill-climber which searches for better team assignments. Optimized team
assignments are then sent back to the SA for further refinement of the timetable and
the process continues until termination condition is met.

It is clear from the description of inner workings of both search algorithms that the
SA component uses local neighborhoods defined in [2] and therefore operates only on
valid DRRTs while the hill-climbing component uses local exchanges of teams and only
accepts such that lead to better schedules using the first-improving strategy.

The criterion function they used takes into account both total distance of the tourna-
ment and estimate of future costs of current choices. That is implemented via so-called
look-ahead procedure which is based on beam search.

9

2. TTP — Problem definition and related work .
The conclusion is that Lim, Rodrigues and Zhang developed quite sophisticated and

rather efficient method for solving TTP. They combined several search algorithms to-
gether in innovative way and created an algorithm capable of finding solutions of high
quality.

2.6.2 Population-based approaches
Besides numerous single-solution algorithms designed for TTP, there are few based on
general framework of evolutionary algorithms (EA). These are population-based meta-
heuristic approaches working quite differently than their single-solution counterparts.
Let us remind that this work approaches the problem with hybrid genetic algorithm
and other EA-based methods are therefore of high relevance to us.

One such method was proposed in 2006 by Biajoli and Lorena [8] who used memetic
algorithm (MA) composed of general genetic algorithm and embedded simulated an-
nealing to solve the mirrored version of TTP.

Proposed algorithm is a GA working over population of chromosomes represented by
vectors of length n (the number of teams) of integer numbers. Each of these vectors
contains a permutation of sequence [1 . . . n]. The algorithm then uses so-called polygon
method to expand the genotype into RRT.

The polygon method works as follows:

1. team at the first position (index 1) of the sequence is called the base team
2. the base team plays the team at index 2
3. team at index i ∈ {3, . . . , (n/2) + 1} plays team at index n− i + 3
4. once the round is finished, each team at index i ∈ {2 . . . n} is shifted left to index

i− 1 and team at index 2 is moved to index n, the base team remains at index 1
5. steps 2 to 4 are repeated n− 1 times

Lets assume following sequence: 4 3 6 1 5 2. The application of the polygon
method to this sequence is depicted in figure 2.2. As we can see, the result of that
process is not valid round-robin tournament as the information about where the games
are held is missing. According to Biajoli and Lorena, they use a simple heuristic to
complete the tournament, yet no details about the procedure are given.

Note that the algorithm always produces only one half of the solution. The other
half is implicitly known due to the mirror constraint.

Round 1 4 3 6 1 5 2

Round 2 4 6 1 5 2 3

Round 3 4 1 5 2 3 6

Round 4 4 5 2 3 6 1

Round 5 4 2 3 6 1 5

Figure 2.2. Illustration of “polygon method” used to generate round-robin tournaments

The genetic algorithm itself works in a standard way. Individuals are selected using
unspecified selection operator. Two selected parents are then subjected to so-called
block order crossover which produces single offspring. This new individual may, with

10

. 2.6 Related work

certain probability, undergo a mutation process implemented as GameSwap operator
which is slightly modified SwapPartialTeams procedure from [2].

After being created (and possibly mutated), each individual is refined using the SA
local search algorithm. The authors, however, provided very little information about
the local search component of their algorithm. We can only say that the local search
component addresses the individual to nearest local optimum using local neighborhoods
very similar to those defined in [2].

Overall, the paper doesn’t provide much detail about some of the key features of the
algorithm. Nevertheless, the results seem to be satisfactory. Unfortunately, the is no
way we could directly compare their algorithm to ours since TTP and mTTP are in
fact two different problems.

Another approach using EA framework was posted in 2009 by Mısır, Wauters, Ver-
beeck and Berghe. Their method was, however, very different from ours. Instead of
using genetic algorithms, these four researchers decided to utilize hyper-heuristics (HH).
The concept of HH still belongs to (quite broad) family of evolutionary algorithms, yet
it works in a very specific way. Hyper-heuristics do not operate over population of so-
lutions of the actual problem as they rather work with population of so-called low-level
heuristics (LLHs).

A low-level heuristic is a simple heuristic specifically designed for the problem at
hand. The HH algorithm then maintains a set (or a population) of these LLHs and
evolves a way of combining them together to achieve the best possible solution of under-
lying problem. The low-level heuristics used in their paper were the local neighborhoods
defined in [2] which we describe in detail in section 4.5.

Interestingly enough, the mechanism responsible for selecting appropriate LLHs was
not evolutionary algorithm at all. Instead, a technique called learning automaton (LA)
was employed. According to [11], learning automata are simple learning devices orig-
inally designed to study human or animal behavior. The objective of such a device is
to learn to select optimal action based on past experience. Internally it is represented
by a probability distribution over set of possible actions—LLHs in this case—which
determines how likely it is for each action to be selected. This distribution is updated
via predefined scheme according to whether or not the selected action succeeds. The
rationale behind this system is to increase probability of applying successful actions
and decrease probability of unsuccessful ones.

The algorithm itself then consists of single learning automaton and several low-level
heuristics. These heuristics are repeatedly selected with respect to the probability
incorporated in the automaton and their effect on underlying problem is evaluated.
However, it is unclear from the description of the process to what exactly are those
LLHs applied. It seems that they alter either one or several TTP tournaments. Once
evaluated, the information about the “success” of the LLH is passed to the controlling
LA which then updates the probability for that LLH accordingly.

A LLH is deemed successful if it generates a solution which gets accepted. The
acceptance criterion embedded in the algorithm always accepts non-worsening solutions,
but sometimes it’s also able to accept worsening ones. That happens after a predefined
number of worsening solutions have been generated and rejected. In such case the
algorithm assumes that current solution is not likely to ever get improved and allows
worse one to be accepted.

According to authors of the paper, their algorithm is able to produce solutions of
high quality which are very close to currently best known solutions. Furthermore, they

11

2. TTP — Problem definition and related work .
claim their method works noticeably faster than some of other approaches from the
literature. All this proves that the hyper-heuristics are robust enough to solve complex
optimization problems such as TTP.

One more method based on evolutionary algorithms was developed by Uthus, Riddle,
and Guesgen in 2009 [7]. They approached the problem using ant colony optimization
(ACO) technique. ACO is a metaheuristic approach inspired by real ants. These little
insects communicate using pheromone trails. The more ants go the same way, the
stronger the pheromone trail and the more attractive that path becomes to other ants.
This behavior is mimicked by the ACO framework where ants are replaced by very
simple worker units which communicate with each other using “pheromone matrix”.

The paper posted by Uthus et al. requires rather deep knowledge of ACO and other
ant-colony-based systems, though. That’s why we will describe it very briefly.

In their work, the authors used ants assigned to individual teams. These ants
then built the tournament round by round whilst interacting with each other using
pheromone matrix. The actual procedure being carried out by the ants used some
features from constraint programing (like the teams being viewed as variables with
domains filled with potential opponents) together with backjumping mechanism for
reverting changes leading to infeasible states. The constraint programing features are
interesting for us as we use some of them in our implementation as well, yet after deeper
examination of their work, we found out that this is the one and only similarity to our
approach.

Above that, Uthus et al. incorporated a concept of home/away patterns similar
to those used in [10]. These patterns are then used during constraint propagation.
Additionally, the algorithm also contains a local search component which is a simulated
annealing equipped with local neighborhoods defined in [2] and which is used to locally
optimize generated solutions.

The algorithm is quite complex since it employs several different strategies, which
may be why the authors were able to achieve considerably good results. According to
their comparison with past ACO approaches, this one has proved to be the best so far.

12

Chapter 3
Genetic Algorithms

In this chapter, we will provide an insight into the GA framework on which our work
is based. We will present and explain basic terminology on which we will rely later on
when describing our approach.

Genetic algorithms are members of even wider family of biologically-inspired algo-
rithms called evolutionary algorithms amongst which we can find methods like genetic
programming, evolution strategies, differential evolution and others. All these meth-
ods utilize evolutionary principles we can observe with living things in nature such as
reproduction, mutation, selection and recombination.

Above all, there are two main concepts that are common to virtually all evolutionary
algorithms: fitness and population.

3.1 Population and fitness
Unlike conventional optimization algorithms working with only one solution, EAs main-
tain a population—a collection—of possible solutions. Typically, all members of the
population are valid solutions to the problem being solved. This makes every EA an
anytime algorithm able to return valid solution to the problem after being stopped after
arbitrary amount of time spent in computation.

As with biological organisms—whose reproduction cycle EAs mimic—all individuals
in the population are bearers of genetic information.

3.1.1 Genotype
Since all individuals are typically valid solutions of the problem solved by EA, the
genetic information contained in each of them encodes a solution to that problem. The
actual representation of this genetic information is called genotype.

For instance, in so-called standard GA, the genotype is an array of bits of fixed
length. Such a binary sequence may represent pretty much anything and is therefore
general enough to be applicable to a whole lot of various problems. But sometimes it
is more convenient to represent the solution in other way. In such case, the genotype
will be different, for instance an array of real numbers of variable length. There are no
limitations on what the genotype should look like so the most appropriate representation
for the problem at hand may be used.

3.1.2 Phenotype
There are usually numerous ways how to encode a solution to a problem. One can use
the standard way and go for a bit array. Or an arbitrary (and possibly more complex)
representation may be chosen. But whichever way the solution is encoded, the genotype
always represent the same thing. And that thing is a solution of the problem, or—in
EA terminology—a phenotype.

13

3. Genetic Algorithms .
The term “phenotype” is used when speaking about the individuals in context of the

actual problem. It allows for distinguishment between the actual representation of the
solution and the solution itself.

For example, having an individual whose genotype is an array of bits of length eight,
the phenotype may be a set of eight Boolean variables whose values would correspond
to zeros and ones in the genotype.

3.1.3 Fitness
Based on the genetic information stored in a form of genotype, different individuals
usually represents different solutions to the problem. To be able to determine the
quality of each of them, a fitness is used.

The concept of fitness incorporates the “survival of the fittest” paradigm into evo-
lutionary algorithms. The strengths and weaknesses of an individual originating in its
genetic information are combined together and represented as single real number as-
signed to it by the evaluation function. The fitness specifies how “fit” is that individual
for the “environment”. In other words, it tells us how good the solution is with respect
to the underlying problem.

By convention, higher fitness implies higher quality of the solution and vice versa.
However, for minimization problems this notion is sometimes reversed as it is more
convenient to work with the fitness “as is”.

3.2 General scheme of GA
We have stated before that GAs work with population of individuals. We didn’t say,
however, what exactly they do with it. In this section, we present and explain inner
workings of the most general genetic algorithm.

Genetic algorithms in general try to replicate the process of biological evolution. In
nature, the strongest (or most fit) individuals have highest chance to reproduce and
produce offsprings. During the process, genetic information is not passed perfectly from
parents to their descendants which leads to mutations. The newly created generation of
offsprings then replaces (or integrates with) the current population of parents. This very
scheme is simulated in genetic algorithms using genetic operators which are explained
in more detail below.

Figure 3.1 then shows a pseudocode of simple GA using following genetic operators:
selection, crossover, mutation and replacement.

3.3 Genetic operators
There are four different types of genetic operators used in GAs. Each of them simulates
a part of the evolutionary process as it happens in nature. In most applications, all
four types are used, but in some special cases some of them are omitted which often
leads to severe changes in behavior of the GA.

3.3.1 Selection
The selection operator replicates the “natural selection” mechanism from biological
evolution. It operates over the whole population and selects individuals for mating.
The selection is customarily fitness-aware and prefers individuals with high fitness over
those of low quality. The selection operator is simulating the real-world scenario in
which highly adapted individuals are more likely to breed and produce children.

14

. 3.3 Genetic operators

1 ALGORITHM general GA
2 Input: parameters
3 Output: best solution found
4
5 // initialization
6 currentPopulation = generateInitialPopulation()
7 bestIndividual = NULL
8
9 while not terminationCondition.isSatisfied() do

10 // selection
11 parents = select(currentPopulation)
12
13 // crossover
14 offsprings = recombine(parents)
15
16 // mutation
17 mutate(offsprings)
18
19 // replacement
20 currentPopulation = replace(currentPopulation, offsprings)
21
22 // update of best-so-far individual
23 if bestIndividual better than currentPopulation.bestIndividual
24 bestIndividual = currentPopulation.bestIndividual
25 end if
26 end while
27 // return the best-so-far individual
28 return bestIndividual

Figure 3.1. Pseudocode of the general GA

In GAs, the two most commonly used selection mechanisms are tournament selection
and roulette wheel selection.
Tournament selection is quite simple and straightforward mechanism. It needs one
parameter K which specifies the size of the tournament. The operator then randomly
selects K “contestants” from the population and compares their fitness. The one with
highest fitness is claimed winner of the tournament and gets selected for breeding.

Figure 3.2 depicts the working of tournament selection over small population of seven
individuals with K = 3.

fitness = 9

Population

Tournament
k= 3

fitness = 8

fitness = 2

fitness = 3

fitness = 7

fitness = 5

fitness = 1

fitness = 2

fitness = 3

fitness = 7
fitness = 7

Figure 3.2. Example of tournament selection

15

3. Genetic Algorithms .
Roulette wheel selection is another common selection strategy. With this operator,
an individual i will be selected with probability

pi = fi∑n
j=1 fj

,

where fi is fitness of individual i and n is size of the population. This can be viewed
as putting individuals on virtual roulette wheel where each of them would occupy an
area proportionate to its fitness.

In figure 3.3 a roulette wheel selection over population of six individuals is depicted.
In this example, an individual with fitness 3 and probability of selection 1

3 is selected.

fitness = 6

 P = 1/3

fitness = 3

 P = 1/6

fitness = 2

 P = 1/9

fitness = 6

 P = 1/9

fitness = 6

 P = 1/9

fitness = 3

 P = 1/6

Figure 3.3. Example of roulette wheel selection

3.3.2 Crossover
Once the GA selects individuals from the population, it proceeds to the stage of re-
combination. This process simulates mating of living organisms and is represented by
a crossover operator.

The crossover is responsible for generating new individuals out of selected ones. The
process works by passing pieces of genetic information (genotype) randomly from par-
ents to newly created children.

Unlike in real world, there are no restrictions on how many “parents” can get involved
in the breeding process, but some of the most common crossovers do require two parents
from which they generate one or two offsprings. An example of such a procedure is so-
called “one-point crossover” (depicted in figure 3.4) which works with fixed-length array
genotypes.

Parent 1 Parent 2

Offspring 1 Offspring 2

Figure 3.4. Illustration of one-point crossover

16

. 3.3 Genetic operators

3.3.3 Mutation
There is one very significant difference between “crossover” in biological evolution and
its EA counterpart. While in nature, the process of passing genetic information from
parents to their children is imperfect and mutations can happen along the way, in EAs
this process is typically flawless and information gets transferred from one individual to
another unchanged. To simulate these imperfections, another genetic operator is used:
mutation.

The mutation operator introduces diversity in the population and sometimes allows
the algorithm to reach parts of a search space which otherwise couldn’t be visited.

A most common scenario of incorporating a mutation into GA is by defining a muta-
tion rate. That is typically a parameter of the search which specifies how likely it is for
an individual to get mutated. Small value implies sparse application of the mutation
operator which may lead to insufficient diversity in the population, whereas too high
value may introduce unnecessary amount of diversity which can prevent the algorithm
from converging towards optimum.

3.3.4 Replacement
The last of genetic operators is called replacement and its function is to integrate newly
created offsprings into the population. The result of this process is also a population
which represents new generation of individuals. There are two most common replace-
ment schemes: generational and steady state.
Generational replacement is very straightforward. As the name suggests, it replaces
the whole generation. This scenario mimics the life cycle of short-lived creatures such as
some types of insects—the parents mate and die and are immediately replaced by their
descendants. This is often implemented by throwing away all individuals in current
population and replacing them with newly created ones.
Steady-state replacement, on the other hand, replicates the life cycle of long-lived
creatures which produce their offsprings and continue living with them. However, newly
created individuals cannot be added to the population just like that since sooner or later
the population wouldn’t fit into memory. And on top of that, the population is usually
fixed in size.

To be able to incorporate newly generated offsprings to the population, the replace-
ment operator first has to make space for them by getting rid of some individuals in
the population. Among several ways of how to select which individuals to evict, the
following two are the most common:. completely at random—the usual way as it doesn’t decrease diversity of the popula-

tion, but there is no guarantee that individuals of high quality won’t be discarded.based on fitness—worst individuals are removed from the population which may cause
premature convergence

Most replacement implementations can discard individuals of high quality during the
process. To prevent this, a concept of elitism was introduced.
Elitism is a mechanism that protects high-quality individuals from being disposed by
the replacement operator. With elitism enabled, GA keeps track of best individuals
in the population and directly injects some of them in new population when it comes
to replacement. These individuals are called elite individuals and their number is
determined by input parameter.

17

3. Genetic Algorithms .
3.4 Memetic algorithms

Besides the standard genetic algorithm we described in previous sections, there are
other, more specialized variants, of GAs like memetic algorithms (MAs) which are
important to us since our implementation utilizes this technique.

3.4.1 General scheme

A memetic algorithm is a genetic algorithm with embedded local-improvement compo-
nent. Individuals are locally refined to imitate the process of learning that living things
exhibit during their lifetime. The idea is that genetic information is just a predisposi-
tion that gives an individual its potential, but only through learning this potential can
be fully unlocked.

In MAs, this is usually done by applying local search on every newly generated indi-
vidual right after application of all genetic operators. The general scheme of memetic
algorithm is presented as a pseudocode in figure 3.5.

1 ALGORITHM general GA
2 Input: parameters
3 Output: best solution found
4
5 // initialization
6 currentPopulation = generateInitialPopulation()
7
8 while not terminationCondition.isSatisfied() do
9 // selection

10 parents = select(currentPopulation)
11
12 // crossover
13 offsprings = recombine(parents)
14
15 // local optimization
16 for offspring in offsprings do
17 locallyOptimize(offspring)
18 end for
19
20 // mutation
21 mutate(offsprings)
22
23 // replacement
24 currentPopulation = replace(currentPopulation, offsprings)
25
26 // update of best-so-far individual
27 if bestIndividual better than currentPopulation.bestIndividual
28 bestIndividual = currentPopulation.bestIndividual
29 end if
30 end while
31 // return the best-so-far individual
32 return bestIndividual

Figure 3.5. Pseudocode of general memetic algorithm

18

. 3.4 Memetic algorithms

When compared to pseudocode of GA (figure 3.1) we notice that MA performs the
local optimization as an additional operation on each generated offspring (lines 16 to
18 in figure 3.5).

3.4.2 Local optimization techniques
In theory of memetic algorithms, there are two different approaches when it comes to
local optimization.
Lamarckian evolution is based on thoughts of Jean Baptiste Lamarck who defined
evolutionary process by which an organism can adapt to environment through learning.
Specifically, if an individual learned to use some of its features, that feature would
become “stronger” over the lifetime of the individual. In terms of genetic algorithms,
this means that learning actually changes the genotype of the individual.

With lamarckian evolution paradigm, the MA applies a local optimization step to an
individual and keeps only the refined version in the population.
Baldwin effect, on the other hand, states something little different. An individual
is assumed to be able to learn, but learning can only increase increase its chance to
reproduce. According to Baldwin, if an individual is capable of learning something that
makes it more fit to the environment, it only increases its fitness and the individual has
thus higher chance to reproduce, but no physical changes will occur because of learning.

Translated to terms of memetic algorithms, once an individual is locally optimized,
its fitness is improved to match the result of local optimization procedure, but the
genotype remains the same.

19

Chapter 4
Proposed approach

In this chapter, we will provide detailed explanation of our implementation of GA for
solving the TTP. First, we will give detailed description of our representation of the
problem including the so-called expansion operator. Then we will focus on genetic
part of the algorithm and we will finish this chapter with thorough explanation of the
local-optimization component.

4.1 Introduction
As we have said several times before, our implementation is based on genetic algorithms,
more specifically it utilizes a concept of a memetic algorithm.

As such, it incorporates all the features of GAs (like population and genetic operators)
together with local-optimization procedure which is implemented by means of a local
search. Figure 4.1 shows the algorithm in the form of a pseudocode.

4.2 Representation
Partially, we have described the representation before in section 2.3 dedicated to general
representation of TTP. But since our algorithm is a genetic algorithm, we had to find a
way how to encode the solution into genotype of individuals. The most straightforward
approach would be to work with population of two-dimensional arrays, each encoding
directly one particular tournament. But such a representation is difficult to work with
when it comes to genetic operators.

Instead, we used a concept we call expandable chromosome. Such a chromosome
has two representations—the genotype which encodes the solution to the problem and
secondary (extended or expanded) representation with which we can programmatically
operate. This secondary representation is in fact a phenotype (as we defined it in section
3.1.2) of the individual. The former can be transformed (or expanded) into the latter
by so-called expansion operator (described in section 4.4) and the genotype therefore
defines how the phenotype will be constructed. This double representation is beneficial
since the genotype can be designed in such a way that it is easy to work with for genetic
operators while the secondary representation (phenotype) can be used to evaluate the
individual (and, as in this work, it may be also used for local optimization).

In our case, assuming instance of n teams, the genotype is an array of positive integers
of length n · 2(n − 1) divided into 2(n − 1) blocks. Each of these blocks then contains
a permutation of set [1 . . . n]. An example of a chromosome with this genotype for
instance of TTP with four teams is given in figure 4.2.}Block

4 1 3 2 4 1 2 3 2 1 3 4 1 3 2 4 2 1 3 4 2 1 4 3

Figure 4.2. Example of genotype of our chromosome

20

. 4.2 Representation

1 ALGORITHM TTPMA
2 Input: parameters
3 Output: best solution found
4
5 // initialization
6 currentPopulation = generateInitialPopulation()
7
8 while not terminationCondition.isSatisfied() do
9 // selection

10 parents = select(currentPopulation)
11
12 // offsprings creation - either via mutation or recombination
13 offsprings = []
14 if random() < mutationProb
15 // creates offspring by mutating parent
16 for offspring in offsprings do
17 offspring = mutate(parent)
18 offsprings.add(offspring)
19 end for
20 else
21 // creates offsprings using crossover
22 offsprings = recombine(parents)
23 end if
24
25 // local optimization
26 for offspring in offsprings do
27 locallyOptimize(offspring)
28 end for
29
30 // replacement
31 currentPopulation = replace(currentPopulation, offsprings)
32
33 // update of best-so-far individual
34 if bestIndividual better than currentPopulation.bestIndividual
35 bestIndividual = currentPopulation.bestIndividual
36 end if
37 end while
38 // return the best-so-far individual
39 return bestIndividual

Figure 4.1. Pseudocode of our genetic algorithm

As we said earlier, the genotype serves as an input to constructive procedure which
takes the genotype and produces corresponding phenotype. The procedure is called the
expansion operator and is described in detail in section 4.4.

The secondary representation (phenotype) is then the commonly used table repre-
sentation of TTP, just like we described it earlier (section 2.3).

21

4. Proposed approach .
4.3 GA component

The memetic algorithm we use doesn’t deviate much from the standard scheme of
memetic algorithms. The only noticeable difference between pseudocode of our algo-
rithm (fig. 4.1) and pseudocode of the general MA (fig. 3.5) is that we use either
selection and recombination or mutation to generate new individuals.

4.3.1 Initialization
The initial population is generated in a completely random fashion. Each individual is
generated by creating 2n − 2 blocks making up its genotype. Each of these blocks is
constructed by randomly shuffling a sequence of numbers [1 . . . n].

4.3.2 Fitness
As we said before, GAs typically work with population of valid solutions of under-
lying problem. Our algorithm makes no exception. The fitness function is therefore
simply the total distance defined in section 2.4 which is computed from the secondary
representation of a chromosome.

4.3.3 Selection
When it comes to selection, we have implemented both the tournament selection and
roulette wheel selection in their basic forms as described in section 3.3.1.

4.3.4 Crossover
There are three different crossover strategies incorporated in our algorithm, all of
them being quite standard and well-known. As most of the mutation operators, these
crossovers operate over whole blocks within the genotype.
OnePointCrossover is the standard crossover which has been described earlier in section
3.3.2. It takes two parents and produces two offsprings by randomly splitting each
parent in two pieces and passing one part of it on either offspring.
TwoPointCrossover works very much alike the OnePointCrossover with the only dis-
tinction that each of the two parents is split into three parts and each of two offsprings
receives two pieces from one parent and one piece from the other.
RandomCrossover takes arbitrary number of parents and produces arbitrary number
of offsprings. Every offspring is generated block by block by copying random block from
random parent. This operator has the highest exploratory potential since the offsprings
are likely to be very different from their parents.

4.3.5 Mutation
The algorithm uses several mutation operators, from very disruptive ones to ones having
rather small effect on the genotype.
BlockSwap mutation simply swaps two randomly selected blocks in the genotype. The
effect of this operator is depicted in figure 4.3. The magnitude of changes caused by
this operator is relatively high as the chromosome is processed from left to right by the
expansion operator and even small change in a block positioned early in the chromosome
may lead to significant change in produced tournament and its total length.
BlockShuffle mutation shuffles contents of one randomly selected block. The illustra-
tion is given in figure 4.4. The strength of this mutation varies. It is capable of doing
rather small changes to resulting tournament (for example shuffling the right-most block

22

. 4.3 GA component

4 1 3 2 4 1 2 3 2 1 3 4 1 3 2 4 2 1 3 4 2 1 4 3

4 1 3 2 2 1 3 4 2 1 3 4 1 3 2 4 4 1 2 3 2 1 4 3

Figure 4.3. Illustration of block-swap mutation

4 1 3 2 1 4 2 3 2 1 3 4 1 3 2 4 2 1 3 4 2 1 4 3

4 1 3 2 4 1 2 3 2 1 3 4 1 3 2 4 2 1 3 4 2 1 4 3

Figure 4.4. Illustration of block-shuffle mutation

can affect only the last round of the tournament) as well as significant ones (shuffling
the left-most block can result in completely different schedule).

BlockSequenceSwap mutation randomly selects a block after which it “cuts” the geno-
type in two pieces. It then swaps these two pieces. This operator is quite disruptive as
it affects the whole genotype. The process is depicted in figure 4.5 where the genotype
was cut after the fourth block.

4 1 3 2 1 4 2 3 2 1 3 4 1 3 2 4 2 1 3 4 2 1 4 3

2 1 3 4 2 1 4 3 4 1 3 2 1 4 2 3 2 1 3 4 1 3 2 4

Figure 4.5. Illustration of block-sequence-swap mutation

GuidedBlockSwap mutation works the same as BlockSwap mutation with just one
difference: with probability increasing over time, generated indices of blocks to be
swapped are more and more likely to be close to the end of the genotype.

We rationalized this behavior by assumption originating in how the expansion oper-
ator works. We assumed that changes to blocks closer to the end won’t have such a
disruptive effect as changes to blocks at the beginning. And by increasing the proba-
bility of selecting blocks closer to end for swapping, we wanted to allow the algorithm
to make significant changes at the beginning of computation and smaller ones later
on when solutions of high quality may have already been found and would have been
broken by too powerful mutation.

GuidedInBlockSwap mutation works similarly as the GuidedBlockSwap operator as it
also gradually shifts its attention towards the end of the chromosome over time. But
rather than swapping two blocks from the right-hand part of the genotype, it selects
just one block (likely from the end of the chromosome) and swaps two values inside
that block. The process is illustrated by figure 4.6.

23

4. Proposed approach .

2 1 3 4 2 1 4 3 4 1 3 2 1 4 2 3 3 1 2 4 1 3 2 4

4 1 3 2 1 4 2 3 2 1 3 4 1 3 2 4 2 1 3 4 2 1 4 3

Figure 4.6. Illustration of guided-in-block-swap mutation

Amongst all the mutation operators, this is probably the weakest one. Sometimes,
its application may not have any effect at all since swapping two teams which would
play each other results in the same two teams playing each other—that is, no change.

4.3.6 Replacement
Our algorithm is equipped with two most common replacement strategies: generational
and steady-state (see section 3.3.4). Both of them incorporate a mechanism for preserv-
ing arbitrary number of elite individuals.

4.4 Chromosome expansion
Before we advance to the description of local optimization component, we shall shed
some light on the process which transforms the genotype of our individuals into their
secondary representation. It’s necessary since the LS component works exclusively with
the secondary representation of the chromosome.

We call the process of transformation from genotype to the secondary representation
expansion of a chromosome. This expansion operator, as we call the actual component
doing the job, is a vital part of the algorithm as without it we wouldn’t be able to
evaluate our chromosomes.

4.4.1 General overview
Our idea was to incorporate part of the optimization logic into the expansion operator
which should be able to generate solutions of reasonable quality. These would then
serve as well-fit starting points for the local search component giving it higher chance
to improve them even further. To achieve that, we proposed a method based partially
on nearest-neighbor heuristic and partially on constraint programming. Pseudocode of
the process is shown in figure 4.7.

4.4.2 Domains
At the very beginning, each team is assigned with a set of possible opponents—a set of
both positive and negative indices of all other teams—which we call a domain (line 9
in figure 4.7). Formally, for instance of n teams, a domain of team i is defined as

D(i) = {−n,−n + 1, . . . , n− 1, n} \ {−i, i, 0}.

Note that we exclude zero from the set. That’s because team indices start with one
and no team therefore has index zero. Reason of that is utterly pragmatic: we need to
be able to store any index of a team as either positive or negative value and that would
be little difficult if we allowed zero.

The domain is maintained for each team during whole expansion process and plays
crucial role as it allows us to construct the tournament without ever having to backtrack.

24

. 4.4 Chromosome expansion

1 FUNCTION expand
2 Input: chromosome
3 Output: schedule
4
5 // prepare result
6 result = NULL
7
8 // create domains of all teams
9 domains = buildDomains()

10
11 // do the transformation
12 schedule, flag = transform(chromosome)
13
14 // check the result
15 if flag = ASSIGN_LAST
16 result = assignLastRound(schedule, domains)
17 else if flag == USE_SYSTEMATIC_SEARCH
18 // try to find valid rest of the solution using systematic search
19 restOfSolution = systematicSearch(schedule)
20 if restOfSolution != NULL
21 result = append(restOfSolution, schedule)
22 end if
23 end if
24
25 // if the process was successful
26 if result != NULL
27 result = makeValidTournament(schedule)
28 end if
29 // return the result
30 return result

Figure 4.7. Pseudocode of the expansion operator

4.4.3 Building the tournament
Having constructed domains for all teams, the algorithm starts the transformation by
calling the transform method. Inner workings of this function are given in figure 4.8.

This function builds the tournament round by round. It iterates through all blocks
in the chromosome and for each of them, it tries to place all the values in currently
created round of the tournament.

More specifically, it iterates through values in the block one by one and for each
of them, it finds all possible opponents of team whose index matches currently placed
value. Let i be the value currently being placed from a block to the schedule and r be
index of the round currently under construction. An opponent (a team) is claimed valid
if it does not yet play in round r and if i is in its domain. These basic requirements
ensure that each team plays exactly once in each round and that no team will play any
other team more than twice. Resulting tournament won’t thus violate any of the hard
constraints originating in the DRRT definition.

Valid opponents are then sorted by increasing distance. The distance represents an
increment in total distance which would occur if team i and current opponent would
play each other in round r and it is computed using following formula:

distance = dist(i, r) + dist(o, r),

25

4. Proposed approach .
1 FUNCTION transform
2 Assumes: n <- team count; distance matrix
3 Input: chromosome, domains
4 Output: schedule, resultFlag
5
6 // prepare the result
7 schedule = empty (2n - 2) x n table
8
9 // build schedule round by round

10 for roundIndex in [1 ... (2n - 3)]
11 // get one block from the chromosome
12 block = chromosome.getBlock(roundIndex)
13
14 // try to place each value from the block into the schedule
15 for value in block
16 // skip teams already playing in this round
17 if round.contains(value)
18 continue
19 end if
20 // find nearest opponents ordered by ascending distance
21 nearestOpponents = findNearestOpponents(value)
22 for opponent in nearestOpponents
23 placedValue = value
24 // negate currently placed value if needed
25 if opponent > 0
26 placedValue = -value
27 end if
28 // check constraints
29 feasible = assumeMatchup(placedValue, opponent)
30 // if these two teams can play each other
31 if feasible
32 // make them play
33 matchup(round, placedValue, opponent)
34 break
35 end if
36 end for
37 end for
38 // if we were unable to find opponent for all teams
39 if round.length < n
40 return schedule, USE_SYSTEMATIC_SEARCH
41 end if
42 // set this round to the schedule
43 schedule[roundIndex] = round
44 end for
45 // last round is implicitly known
46 return schedule, ASSIGN_LAST_ROUND

Figure 4.8. Pseudocode of the transformation function inside the expansion operator

where i is index of a team being placed into the schedule, o is index of opponent of
team i and dist is the length function defined in section 2.4.

26

. 4.4 Chromosome expansion

An important observation is that opponents are sought for both i and −i. An in-
formation about whether the distance applies to positive or negative version of placed
value is determined from the opponent itself.

For example, if we are trying to place value 3, we find opponents for value 3 and
value −3. Opponents of value 3 will be negative values and opponents of value −3 will
be positive values to indicate where the game would be played. This is checked on line
25 in figure 4.8.

But before we can place any value in the tournament, we have to perform additional
checks. This time, we need to make sure that this move will not have any unpleasant
consequences later which may force us to backtrack some changes.

Let us assume that currently placed value is i and nearest valid opponent is o. Then
we assume that teams i and o would play each other in round r (lets call it a matchup).

We do this by calling the assumeMatchup function which simulates the matchup and
then observes if it would break anything or not. Note that all changes done to the
resulting schedule and/or domains of the teams are temporary and are reverted right
before the method returns.

At the very beginning, it places i and o on their respective places in round r. Then
it removes o from team’s i domain and vice versa. After that, it iterates through all
domains and for each of them it performs following check:

Two and one: Let us assume that D(x) is the currently inspected domain and r =
2n− 4. If it happens that D(x) looks like this: D(x) = {y,−y, z}, i.e. it contains two
elements that are the same in absolute value and one completely different value, then
we must check that domain D(y) does not look like this: D(y) = {x,−x, z}. If it did,
this move is not applicable. The reason is that this situation can only occur exactly
four rounds from the end of the tournament and it implies that there exist two teams
which need to play each other twice while each of them has to play the same third team
once. This setup, however, is invalid as it is impossible to play all these games in just
three remaining rounds. Therefore a failure is returned in such case.

If all domains pass this check, the algorithm continues by removing all teams placed
in round r from domains of all teams. Then it iterates all domains again to perform
tests described below.

Nonempty domains: possibly the most obvious constraint is that the matchup cannot
cause any domain of a team, which is not yet placed in round r, to become empty.
That would mean that this team has no suitable opponent and the schedule cannot be
completed without violating any of the hard constraints. If that happens, the function
returns a failure.

Applicable obvious moves: when stripped of teams playing in current round, domains
can (and usually do) shrink significantly. In case that a team—let’s call it x—is not
yet placed in round r but its domain now contains only one element, let’s say y, it is
inevitable for team x to play team y in this round as there is simply no other option.
We call that an obvious move and we check that matchup of x and y is valid by recursive
call to the assumeMatchup function.

If these tests are successful as well, there is one last check we perform. To make sure
that it is even possible to complete the schedule with changes we have done so far, we
employ a CP solver1).

1) http://jacop.osolpro.com/

27

http://jacop.osolpro.com/

4. Proposed approach .
CSP feasibility: An integer variable is created for each team in every remaining round
and our domains are converted to actual domains of these variables. Then we create
constraints defining valid solution which is in our case an all-different constraint (to
ensure that every team will play exactly once in every round) and if-then constraints
securing that teams will be matched up in pairs. The solver is then asked to find any
solution satisfying these constraints. As far as we can tell, it internally uses depth-first
search with pruning which is fast enough for us to call it many times.

Once the assumeMatchup function returns, we either perform the matchup or not
based on its result. If the move is applicable, it is applied using matchup procedure
which places team i and its opponent o on proper places of current round and removes
i and o from each other’s domains.

The last important feature of the transform method is shown on lines 39 to 41 in
figure 4.8 where it checks whether it was able to place all values from the block. If not,
then a flag is returned to the expand function indicating that a systematic search needs
to be used to complete the tournament.

The systematic search then uses the very same process described in the CSP feasibility
checking, but instead of searching for any solution, it instructs the solver to search for
all possible solutions and amongst them it selects the one minimizing total distance.

It can happen that the solver is unable to find any valid solution at all. In that case,
we simply return nothing as the expanded representation and the individual is discarded
by the genetic algorithm. We don’t mind this happening since we have experimentally
verified that we discard no more than three percent of individuals. That’s small enough
percentage for us to neglect it as the GA is able to compensate for it by quantity of
generated individuals. We do also think that we don’t really waste too much time
expanding solutions which will get discarded, because if we were to repair them, we
would have to invest additional effort into backtracking and constructing portion of the
schedule again.

There is also a possibility that the systematic search is not needed at all. That hap-
pens if the heuristic transform method is able to correctly fill rounds up to index 2n−3.
Then the last round is simply read from the domains in procedure assignLastRound
and correctly set to the schedule.

4.5 Local optimization component
Integral part of every memetic algorithm is a local search component used to address
newly generated individual to (or near to) nearest local optimum.

4.5.1 Overview
Our algorithm, being a memetic one, comes with its own local optimizer which is
implemented by local search. This sub-routine takes expanded chromosome as input
and returns another chromosome with its expanded representation altered in such a
way that it represents more optimal tournament. The pseudocode is given in figure 4.9
and we can easily recognize a random search using first-improving strategy in it.

Let us remind that the LS component works exclusively with the secondary repre-
sentation of the chromosome (that being a table of teams and rounds) and only the
secondary representation gets changed during the process, not the primary genotype of
the chromosome.

28

. 4.5 Local optimization component

1 FUNCTION localsearch
2 Input: chromosome
3 Output: optimized chromozome
4
5 // initialization
6 best = chromosome
7
8 while not terminationCondition.isSatisfied() do
9 // apply random action

10 altered = applyRandomAction(chromosome)
11
12 // did it improve the chromosome?
13 if altered better than best
14 best = altered
15 end if
16 end while
17 // return the best improved chromosome found
18 return best

Figure 4.9. Pseudocode of local search component of our genetic algorithm

4.5.2 Local neighborhoods
The most interesting part of the algorithm is the applyRandomAction method which
does exactly what one would expect: it randomly generates an action and applies it
to given candidate solution. There are five different types of actions the method can
apply.

These actions are not an invention of our own, they were defined as local neighbor-
hoods by Anagnostopoulos et al. [2] for their simulated annealing and became sort of
a standard for almost all single solution approaches. We will briefly describe them to
provide an insight on how they actually work.

SwapHomes neighborhood:
Given a valid DRRT and indices of two teams i and j, this move swaps the home/away

states of these two teams at rounds where they play each other. In other words, if team
i plays at home with team j in round rl and team j plays at home with team i in round
rk, then application of this move will make team i play away with team j in round rl

and team j will also play away with i in round rk. Figure 4.10 illustrates the effect of
SwapHomes move.

As we can see, the SwapHomes move always affects exactly four games in the tourna-
ment. Since the number of changes made by this move is very small, it is the “smallest”
(or least destructive) local move. It is also clear that SwapHomes move can never cause
a valid tournament to become invalid.

SwapRounds neighborhood:
Given a valid DRRT and indices of two rounds i and j, the move just swaps these

rounds (columns). The effect of SwapRounds move is depicted in figure 4.11.
When compared with SwapHomes, this move is more disruptive. The number of

affected games is 2n. But despite the fact that this move affects significantly more
games than SwapHomes move, the resulting schedule will always remain valid, thus no
repair action is needed.

29

4. Proposed approach .
Team/Round R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Team 1 5 2 6 -3 -4 -6 3 4 -2 -5

Team 2 -6 -1 -5 4 5 -3 -4 6 1 3

Team 3 -4 5 4 1 -6 2 -1 -5 6 -2

Team 4 3 -6 -3 -2 1 5 2 -1 -5 6

Team 5 -1 -3 2 6 -2 -4 -6 3 4 1

Team 6 2 4 -1 -5 3 1 5 -2 -3 -4

Team/Round R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Team 1 5 2 6 -3 -4 -6 3 4 -2 -5

Team 2 -6 -1 -5 4 5 -3 -4 6 1 3

Team 3 -4 5 4 1 6 2 -1 -5 -6 -2

Team 4 3 -6 -3 -2 1 5 2 -1 -5 6

Team 5 -1 -3 2 6 -2 -4 -6 3 4 1

Team 6 2 4 -1 -5 -3 1 5 -2 3 -4

Figure 4.10. Swapping home/away states of teams 3 and 6

Team/Round R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Team 1 5 2 6 -3 -4 -6 3 4 -2 -5

Team 2 -6 -1 -5 4 5 -3 -4 6 1 3

Team 3 -4 5 4 1 -6 2 -1 -5 6 -2

Team 4 3 -6 -3 -2 1 5 2 -1 -5 6

Team 5 -1 -3 2 6 -2 -4 -6 3 4 1

Team 6 2 4 -1 -5 3 1 5 -2 -3 -4

Team/Round R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Team 1 5 2 6 4 -4 -6 3 -3 -2 -5

Team 2 -6 -1 -5 6 5 -3 -4 4 1 3

Team 3 -4 5 4 -5 -6 2 -1 1 6 -2

Team 4 3 -6 -3 -1 1 5 2 -2 -5 6

Team 5 -1 -3 2 3 -2 -4 -6 6 4 1

Team 6 2 4 -1 -2 3 1 5 -5 -3 -4

Figure 4.11. Swapping rounds 4 and 8

SwapTeams neighborhood:
Given a valid DRRT and indices of two teams i and j, this move swaps the games of

i and j in every round except when these two teams play each other. More specifically,
this move makes following changes in each round:

1. opponents of selected teams are swapped
2. selected teams themselves are swapped

30

. 4.5 Local optimization component

Team/Round R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Team 1 5 2 6 -3 -4 -6 3 4 -2 -5

Team 2 -6 -1 -5 4 5 -3 -4 6 1 3

Team 3 -4 5 4 1 -6 2 -1 -5 6 -2

Team 4 3 -6 -3 -2 1 5 2 -1 -5 6

Team 5 -1 -3 2 6 -2 -4 -6 3 4 1

Team 6 2 4 -1 -5 3 1 5 -2 -3 -4

Team/Round R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Team 1 5 4 6 -3 -2 -6 3 2 -4 -5

Team 2 3 -6 -3 4 1 5 -4 -1 -5 6

Team 3 -2 5 2 1 -6 4 -1 -5 6 -4

Team 4 -6 -1 -5 -2 5 -3 2 6 1 3

Team 5 -1 -3 4 6 -4 -2 -6 3 2 1

Team 6 4 2 -1 -5 3 1 5 -4 -3 -2

Figure 4.12. Swapping teams 2 and 4

Note that the order of steps 1 and 2 doesn’t matter, the result will be the same.
Figure 4.12 illustrates the process of applying the SwapTeams move to one specific
configuration.

Apparently, the SwapTeams move is quite disruptive. It affects 2n−4 rounds (which
is all except two) and at each of them it alters exactly four games. That makes a total
of 4 · (2n− 4) changed games.

Similarly to both moves mentioned before, the SwapTeams move also cannot void
the validity of given tournament and every produced configuration is guaranteed to be
a valid DRRT.

The three moves described above may seem sufficient as their “strength” varies from
very small (SwapHomes) to rather high (SwapTeams). The authors of [2], however, see
this differently. According to them, these moves are not enough to explore the entire
search space and two additional moves are needed, namely the PartialSwapRounds and
PartialSwapRounds. As their names suggest, these moves generalize the SwapRounds
and SwapTeams moves providing even wider search space.

PartialSwapRounds neighborhood:
Like with the SwapRounds, also the PartialSwapRounds move takes valid DRRT and

two round indices i and j. But it also needs one additional parameter t which is index
of a team whose games are to be swapped. The move then swaps games of team t at
rounds i and j.

Note that swapping two games just like that would result in an invalid tournament.
This move therefore cannot be applied without employing a correction mechanism af-
terwards. Fortunately, there is a straightforward deterministic process to determine
which games also need to be swapped for the tournament to remain valid. This proce-
dure (which is quite well explained in [9]) checks for teams which are affected by the
original swap and swaps their games at incriminated rounds as well.

The result of applying PartialSwapRounds move with parameters i = 2, j = 6 and
t = 4 and the correction mechanism (in [4] called repair-chain) is shown in figure 4.13.

31

4. Proposed approach .
Team/Round R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Team 1 5 2 6 -3 -4 -6 3 4 -2 -5

Team 2 -6 -1 -5 4 5 -3 -4 6 1 3

Team 3 -4 5 4 1 -6 2 -1 -5 6 -2

Team 4 3 -6 -3 -2 1 5 2 -1 -5 6

Team 5 -1 -3 2 6 -2 -4 -6 3 4 1

Team 6 2 4 -1 -5 3 1 5 -2 -3 -4

Team/Round R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Team 1 5 4 6 -3 -4 -6 3 2 -2 -5

Team 2 -6 6 -5 4 5 -3 -4 -1 1 3

Team 3 -4 5 4 1 -6 2 -1 -5 6 -2

Team 4 3 -1 -3 -2 1 5 2 -6 -5 6

Team 5 -1 -3 2 6 -2 -4 -6 3 4 1

Team 6 2 -2 -1 -5 3 1 5 4 -3 -4

Figure 4.13. Application of PartialSwapRounds move and necessary repair chain

As we can see, the move didn’t swap the whole rounds, but just their portions. In
some cases, of course, the PartialSwapRounds may degenerate to SwapRounds move
and swap the whole rounds, but the fact that it is able to swap only some of the games
in both rounds provides this move with variable strength and allows it to reach parts
of the search space unreachable by other moves.
PartialSwapTeams neighborhood:

As a generalization of the SwapTeams neighborhood, the PartialSwapTeams move
takes the same parameters the former does (that being a valid DRRT and indices of
two teams i and j) and additionally one more: round index r. Then it swaps games of
i and j at round r.

Again, this move itself would produce and invalid tournament so the schedule needs
to be updated using a repair-chain.

The repair-chain used with PartialSwapTeams differs from the one used with pre-
viously discussed move—rather than looking for affected teams, this correction mech-
anism looks for rounds which were affected by the move. At these rounds, standard
SwapTeams move is applied. Again, there is detailed description of this procedure
in [9]. Figure 4.14 captures the result of application of PartialSwapTeams move with
parameters i = 3, j = 6 and r = 1 and the correction mechanism.

Like with the PartialSwapRounds move, also PartialSwapTeams may in certain cases
affect 2n− 4 rounds and degenerate to the SwapTeams move. However, in cases when
that doesn’t happen, the PartialSwapTeams provides yet another local neighborhood.

4.5.3 Incorporation of local search into the algorithm
The LS component is obviously directly connected to GA unit. Following the standard
scheme of memetic algorithms, GA unit calls the LS every time a new individual is
created. Once passed to the LS component, individual’s secondary representation gets
refined and its fitness is re-evaluated.

32

. 4.5 Local optimization component

Team/Round R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Team 1 5 2 6 -3 -4 -6 3 4 -2 -5

Team 2 -6 -1 -5 4 5 -3 -4 6 1 3

Team 3 -4 5 4 1 -6 2 -1 -5 6 -2

Team 4 3 -6 -3 -2 1 5 2 -1 -5 6

Team 5 -1 -3 2 6 -2 -4 -6 3 4 1

Team 6 2 4 -1 -5 3 1 5 -2 -3 -4

Team/Round R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Team 1 5 2 6 -6 -4 -3 3 4 -2 -5

Team 2 -3 -1 -5 4 5 -6 -4 3 1 6

Team 3 2 5 4 -5 -6 1 -1 -2 6 -4

Team 4 6 -6 -3 -2 1 5 2 -1 -5 3

Team 5 -1 -3 2 3 -2 -4 -6 6 4 1

Team 6 -4 4 -1 1 3 2 5 -5 -3 -2

Figure 4.14. Application of PartialSwapTeams move and necessary repair chain

Observant reader may have already noticed that interconnection of this kind in-
evitably predetermines our algorithm (specifically its GA part) to utilize Baldwin effect
strategy. Indeed, it does.

Since only the secondary representation gets refined during the local optimization,
fitness of an individual may improve, but its primary representation (the genotype)
stays the same. That means that the “learning” process (simulated by LS component)
doesn’t make any “physical” changes to the individual, which is exactly how we defined
Baldwin effect in section 3.4.2.

Even though it might look like that previous paragraphs completely described the
involvement of LS into the algorithm, it’s not the case. The LS component is used
once more in our implementation, even though it’s not that obvious. But if we re-
view pseudocode of the expansion operator (fig. 4.7), we will notice a method named
makeValidTournament (line 27) which has not yet been explained. It is this very
method that hides the secondary usage for our LS routine.

As we said earlier, the GA component works with population of valid solutions of
TTP (that is DRRTs not violating any hard nor soft constraint). But the expansion
operator internally creates tournaments which are free to violate any soft constraint.
To bridge this gap, the expansion operator is also equipped with LS instance which it
uses to make generated solutions valid with respect to all TTP constraints.

The process is rather simple—whenever an individual is expanded, its brand new (and
most likely invalid from the perspective of TTP) secondary representation is passed to
this local search procedure which is configured in such a way that it only accepts a
move if it makes the tournament violate less constraints and stops immediately once it
doesn’t violate any of them. This way we ensure that generated individuals will always
represent a valid solution of the problem.

33

4. Proposed approach .
4.6 Implementation notes

The program was implemented using Java programming language, specifically Java 8.
To be able to utilize the multi-core architecture of modern CPUs, we used Java’s native
ExecutorService API to make the implementation internally parallel. This parallelism
is implemented in the main loop of GA component and works as follows:

1. several tasks are created in the main thread, each of them being responsible for
creation, expansion and evaluation of new individuals

2. these tasks are run in parallel using ExecutorService, each producing few individ-
uals (a fraction of newly created generation)

3. produced individuals are collected and replacement is done in the main thread again

The CP solver we used is also implemented in Java, which was one of our require-
ments, since this way we were able to interact with it “directly” without any overhead
caused by translating the calls through APIs to solver written in whatever language.

By describing implementation details of the algorithm, we have completed the expla-
nation of our approach. And knowing how the thing works in theory, we will proceed
to the next chapter to see how it works in practice.

34

Chapter 5
Experiments

To evaluate performance of our algorithm, we have designed and conducted a series of
computational experiments.

5.1 Test data
Fortunately, there are numerous test instances for TTP available at Michael Trick’s
webpage1) an they have been there for quite some time now. That is very helpful
since Trick’s data became sort of a standard when it comes to evaluating TTP-solving
algorithms. Thanks to that we didn’t have to make up our own test data and it also
allows us to compare our results with others using the very same instances.

However, we didn’t run our program on all the data available on aforementioned site.
Some of the instances are too large and running experiments over them would take
too much time. Therefore, we selected a subset of these instances for our experiments.
Namely, we picked all of the NL instances as these are the most commonly used. Ad-
ditionally, we selected the Super instances since those are also real-world data and are
not too large either.

5.2 Choosing parameters
When using genetic algorithms, there are always several parameters one has to set, but
it’s not always obvious how to do that. Typical questions related to these choices are:
“How large should the population be?”, “What selection operators should I use?” and
“When do I terminate the computation?”.

When using memetic algorithms, there are few more one has to answer for himself,
like “What local optimization routine to employ?” and “For how long should the local
optimizer run on each individual?”.

On following lines, we discuss the possibilities and rationalize our choices of values
of these parameters.

5.2.1 Population
There are basically two decisions to make about the population: its size and whether
or not to use elitism.

We decided that the population should consist of 100 individuals. The choice was
mostly empirical: it cannot be considered too small, yet it’s not too large. Note that
size of the population has severe impact on runtime of the algorithm as it takes some
time to construct, expand and evaluate each individual. By going with 100 individuals,
we limited ourselves to not-so-huge population, but we knew the algorithm won’t take
too much time to run.

As for the elitism, we configured it to preserve ten best individuals using a rule of
thumb.
1) http://mat.gsia.cmu.edu/TOURN/

35

http://mat.gsia.cmu.edu/TOURN/

5. Experiments .
5.2.2 Selection

We experimentally verified that the algorithm works pretty much the same whether us-
ing tournament or roulette-wheel selection (assuming the tournament size is reasonably
small). The choice was made in favor of tournament selection which is configurable and
provides variable selection pressure. And since we wanted our algorithm to be more
explorative than exploitative, we set the tournament size to three.

5.2.3 Crossover
Once again we performed several experiments and discovered that RandomCrossover
exhibits the highest explorative potential and causes the algorithm to try many different
combinations of genes. Based on that observation, we selected it as our recombination
operator and configured it in such a way that it creates two offsprings from two parents.

5.2.4 Mutation
The choice was not easy with mutations. We have implemented five different mutation
strategies, but we didn’t want to use all of them as we weren’t convinced that the ones
we considered “weak” would be of any use to the algorithm.

To decide which mutation(s) to use, we have designed a preliminary experiment.
For each of the NL instances, we generated a test set of 100 individuals. Then, for
each mutation, we iterated all individuals in the set for hundred times, copied each of
them and applied the mutation to the clone. That makes a 10 000 applications of each
mutation.

An important part of the experiment was that we simulated passing generations of
the algorithm. When iterating individuals from the test set, we set index of current
generation to be ten times the index of current iteration over the set. That made
mutations behave like if a thousand generations passed every time.

This was particularly relevant for GuidedRoundSwap and GuidedInRoundSwap mu-
tations which change their internal probability distributions used for random index
selection based on number of generations passed. Other mutations just did not care
about this and continued operating normally.

During the test, we measured fitness of the original individual from the set (foriginal)
and fitness of its clone after application of the mutation (fmutated). Then we computed
an improvement as

improvement = foriginal − fmutated

foriginal
.

Note that the improvement can be negative which indicates that the original chro-
mosome was worsened by the mutation.

From collected data, we were able to compute following metrics for every mutation:. ratio of improving applications to total number of applications. ratio of worsening applications to total number of applications.average improvement.average improvement over improving mutations

We then plotted these metrics and used these plots to decide what mutation(s) to
use for the actual experiments. Results of this preliminary experiment are given in
appendix A.

36

. 5.3 Experimental setup

We soon realized, that we cannot jump to any conclusions based only on average im-
provement, since the average improvement was usually so small that we had to multiply
it by 100 to make it reasonably visible in the plots. That’s why we decided to ignore
the average improvement and look on other metrics.

We figured that we are not interested in mutations that do nothing and ruled out the
GuidedInBlockSwap mutation as it had virtually no effect in almost 80% of applications
on some instances. But the remaining four mutation operators were difficult to compare.
After putting some though into it, we decided to also discard the BlockSequnceSwap
mutation as it seems too disruptive. It didn’t yield bad results in this test, but the
algorithm was already set to high exploration by combination of other parameters and
we didn’t want it to work in a completely random fashion.

This way, we were left with BlockSwap, BlockShuffle and GuidedBlockSwap mutations
which we incorporated into the algorithm in such a way that whenever a mutation was
needed, one of these was randomly picked (with uniform probability) and used.

5.2.5 Replacement
With replacement, the choice was somewhat obvious. We knew that for larger instances
the search space of TTP becomes really huge and we needed the algorithm to explore
as much of it as it could. Apparently, generational replacement is much more fit for
this task than steady-state strategy. All the more so as chromosomes of high quality are
preserved via elitism in our configuration. There was simply no need to keep any more
individuals besides the elite ones when transiting from one generation to the next.

5.2.6 Local search
The only thing we needed to figure out for the local search component was when to stop
it. We decided to let it apply 5 000 random actions and then return the best secondary
representation it found.

Rationale behind this decision was that the local search component is not powerful
enough to improve the solution rapidly in short amount of time. We deduced this
from results of single-solution approaches we reviewed according to which it was quite
common to let the algorithm run for relatively long time (e.g. several days) before it
was able to find high-quality solution. We therefore wanted the GA component to be
responsible for searching the space of solutions and limited the LS unit to rather short
runtime to provide nothing but an option to slightly increase the quality of individuals
generated by GA part of the algorithm.

5.3 Experimental setup
Once we decided how to set up the algorithm for our tests, we could proceed to the
actual experiments.

5.3.1 Structure of our experiments
The tests were designed as follows: for each test instance we ran the algorithm with
the same parameters (shown in table 5.1). The algorithm was terminated after either
running through one thousand generations or reaching a solution of predefined fitness.

The threshold was set as the highest lower bound currently known for corresponding
instance (this information is also available at Trick’s webpage). This proved to be useful

37

5. Experiments .
Component Parameterkgroup Parameter Value

populationksize 100

elitism 10

selectionktype tournament

tournamentksize 3

crossoverktype random

requiredkparents 2

producedkoffsprings 2

mutationktypes BlockSwap,kBlockShuffle,kGuidedInBlockSwap

probabilitykofkselecting 1/3k(uniform)

numberkofkgenerations 1000

reachedkfitness highestklowerkboundkforkcurrentkinstance

LS termination numberkofkrandomkactions 5000

selection

termination

GA

population

crossover

mutation

Table 5.1. Parameters chosen for running the experiments

especially on smaller instances when the algorithm is able to find optimal solution in
just few generations and there is then no point in running a thousand of them.

Each instance was evaluated ten times so that we could collect enough data for
averaging the results. For larger instances where the algorithm actually reached the
limit on number of generations, it may have spent up to 10 000 generations in total on
a single instance.

5.3.2 Experimental environment
The experiments were run on a machine equipped with Intel Core i7 CPU and 8 GB
of main memory. Our algorithm utilized all eight cores of the CPU by running in eight
threads.

The machine was running Windows 7 operating system and result of java -version
command issued before the tests was following:

java version "1.8.0_25"
Java(TM) SE Runtime Environment (build 1.8.0_25-b18)
Java HotSpot(TM) 64-Bit Server VM (build 25.25-b02, mixed mode)

5.4 Results and discussion
We have conducted numerous experiments in compliance with setup and parameters
described in previous sections. On following lines, we will present the results for each
“family” of instances separately and compare them with results of other approaches
from the literature.

5.4.1 Observed metrics
There are not many metrics one needs to measure to be able to evaluate results of
TTP-solving algorithm. In fact, there are only two: total distance and time.

Total distance is obviously the only measure needed for assessing the quality of found
solutions. In TTP, the distance is an abstract value without any specific unit and we
therefore present it as a simple number in the results.

The other observed metric—time—is then used to evaluate efficiency of the algorithm.
Apparently, the faster the algorithm is able to find a solution of high quality, the better.
But let us remind that genetic algorithms are usually (noticeably) slower than their
single-solution counterparts because of their robustness originating in maintaining a

38

. 5.4 Results and discussion

population of solutions which causes additional overhead and results in longer runtimes.
All time values are presented in seconds in tables below.

For both the total distance and time required to find the best-of-run solution, we
computed the minimal (Min), average (Avg) and maximal (Max) value together with
standard deviation (Std. Dev) over all ten runs of the algorithm over each instance.

When comparing our results with results of some other approach, we computed a
difference between average total distance of our method and the other approach (Diff).

Additionally, to be able to monitor the behavior of our algorithm, we also recorded
the worst, average and median fitness together with number of individuals with unique
fitness over all individuals in each population. These values should help us understand
why the algorithm works the way it does.

5.4.2 Results for NL instances
As we mentioned before, the NL instance family is possibly the most commonly used
test set for the TTP and most papers in the literature report their results on this set
of instances.

We have selected four approaches to compare our results with, two of which deal
with single-solution methods while the other two represent evolutionary approaches.
The single-solution techniques are simulated annealing (TTSA) [2] and tabu search
(CNTS) [4], whereas evolutionary methods are ant colony optimization (AFC-TTP) [7]
and hyper-heuristics (LHH) [6].

Let us first present results of our algorithm. Overview of results we achieved on the
NL instance family is given in table 5.2.

Instance Min Avg Max Std.oDev Min Avg Max Std.oDev

NL4 8o276 8o276.0 8o276 0 0 0.3 1 0.180

NL6 23o916 23o916.0 23o916 0 1 16.8 45 13.224

NL8 39o721 39o721.0 39o721 0 331 778.7 1o374 385.638

NL10 65o560 66o069.0 66o503 288.769 240 1o466.3 2o604 855.940

NL12 127o266 128o842.3 129o860 766.074 1o023 3o060.4 5o071 1o542.298

NL14 227o921 230o984.1 232o416 1o528.669 380 7o361.0 11o480 3o985.590

NL16 322o876 326o704.8 329o814 2o458.088 5o149 11o740.9 21o132 6o262.396

Totalodistance Time

Table 5.2. Results for the NL family of instances

Comparison of our algorithm (TTPMA) with TTSA, CNTS, AFC-TTP and LHH is
then given in tables 5.3, 5.4, 5.5 and 5.6 respectively.

Note that for these comparisons, we omitted instances of less than ten teams. The
reason is that on these small instances, virtually every approach was able to find optimal
solution every time (including ours), hence the comparison would be meaningless.

Instance Min Avg Std.3Dev Avg.3Time Min Avg Std.3Dev Avg3Time Diff

NL10 653560 663069.0 288.769 13466.3 593583 593606.0 53.36 403268.6 9.782%

NL12 1273266 1283842.3 766.074 33060.4 1123800 1133853.0 467.91 683505.3 11.634%

NL14 2273921 2303984.1 13528.669 73361.0 1903368 1923931.9 13188.08 2333578.4 16.474%

NL16 3223876 3263704.8 23458.088 113740.9 2673194 2753015.9 23488.02 1923086.6 15.821%

TTPMA TTSA

Table 5.3. Comparison of our approach with TTSA on NL instances

39

5. Experiments .
Instance Min Avg Std.3Dev Avg.3Time Min Avg Std.3Dev Avg3Time Diff

NL10 653560 663069.0 288.769 13466.3 593876 603424.2 823.90 73056.7 8.544%

NL12 1273266 1283842.3 766.074 33060.4 1133729 1143880.6 948.20 103877.3 10.836%

NL14 2273921 2303984.1 13528.669 73361.0 1943807 1973284.2 23698.50 293635.5 14.590%

NL16 3223876 3263704.8 23458.088 113740.9 2753296 2793465.8 33242.40 513022.4 14.459%

TTPMA CNTS

Table 5.4. Comparison of our approach with CNTS on NL instances

Instance Min Avg Std.3Dev Avg.3Time Min Avg Std.3Dev Avg3Time Diff

NL10 653560 663069.0 288.769 13466.3 593634 593928.3 155.47 43969.5 9.294-

NL12 1273266 1283842.3 766.074 33060.4 1123521 1143437.4 895.70 73660.1 11.180-

NL14 2273921 2303984.1 13528.669 73361.0 1963849 1983950.5 13294.43 203870.1 13.868-

NL16 3223876 3263704.8 23458.088 113740.9 2783456 2853529.6 33398.57 353931.3 12.603-

TTPMA AFC-TTP

Table 5.5. Comparison of our approach with ACF on NL instances

Instance Min Avg Std.7Dev Avg.7Time Min Avg Std.7Dev Avg7Time Diff

NL10 657560 667069.0 288.769 17466.3 597583 607046.0 335.00 37600.0 9.116%

NL12 1277266 1287842.3 766.074 37060.4 1127873 1157828.0 17313.00 37600.0 10.101%

NL14 2277921 2307984.1 17528.669 77361.0 1967058 2017256.0 27779.00 37600.0 12.870%

NL16 3227876 3267704.8 27458.088 117740.9 2797330 2887113.0 47267.00 37600.0 11.812%

TTPMA LHH

Table 5.6. Comparison of our approach with LHH on NL instances

5.4.3 Results for Super instances
Unlike with the NL instances, the Super instance family is used quite rarely in the
literature. There are only two papers that we know of which state detailed results on
this instance family: [6] (LHH) and [9] (TTILSopt). We therefore compare our results
to results of these two approaches.

The overview of results achieved by our algorithm on each of the Super instances is
given in table 5.7.

Instance Min Avg Max Std.TDev Min Avg Max Std.TDev

Super4 63T405 63T405.0 60T405 0 0 0.3 1 0.160

Super6 130T365 130T365.0 130T365 0 3 21.7 92 29.120

Super8 182T409 182T441.1 182T594 69 441 1T311.2 1T917 479.194

Super10 330T183 334T460.6 337T996 2T130.892 378 1T868.2 2T949 982.235

Super12 498T747 501T755.8 504T782 2T506.531 1T413 3T529.3 6T395 1T827.260

Super14 684T415 693T386.0 697T739 6T057.813 10T376 12T011.1 13T500 1T310.908

TotalTdistance Time

Table 5.7. Results for the Super family of instances

Comparison of our results with those of LHH and TTILSopt is then presented in
tables 5.8 and 5.9 respectively.

Notice that this time we listed all instances in the comparison. The reason is that
it no longer holds that every approach solves the small ones to optimality every time
as LHH reached sub-optimal solutions even on the smallest instance of just four teams.
But on the other hand, the time required to find them was extremely short.

40

. 5.4 Results and discussion

Instance Min Avg Std.7Dev Avg.7Time Min Avg Std.7Dev Avg7Time Diff

Super4 637405 637405.0 0 0.3 637405 717033.0 127283.00 0 -12.031%

Super6 1307365 1307365.0 0 21.7 1307365 1307365.0 0 17800.0 0%

Super8 1827409 1827441.1 68.651 17311.2 1827409 1827975.0 558.00 37600.0 -0.293%

Super10 3307183 3347460.6 27130.892 17868.2 3187421 3277152.0 67295.00 37600.0 2.185%

Super12 4987747 5017755.8 27506.531 37529.3 4677267 4757899.0 57626.00 37600.0 5.153%

Super14 6847415 6937386.0 67057.813 127011.1 5997296 6347535.0 137963.00 47700.0 8.487%

TTPMA LHH

Table 5.8. Comparison of our approach with LHH on Super instances

Instance Min Avg Std.5Dev Avg.5Time Min Avg Std.5Dev Avg5Time Diff

Super4 635405 635405.0 0 0.3 ? ? ? ? ?

Super6 1305365 1305365.0 0 21.7 1305365 1305365.0 0 0.1 08

Super8 1825409 1825441.1 68.651 15311.2 1825409 1825409.0 0 77.3 0.0188

Super10 3305183 3345460.6 25130.892 15868.2 3185007 3185225.5 262.97 25313.6 4.8548

Super12 4985747 5015755.8 25506.531 35529.3 4695290 4725002.1 15228.14 25514.4 5.9308

Super14 6845415 6935386.0 65057.813 125011.1 5945388 6005533.6 55187.21 15911.6 13.3918

TTPMA TTILSopt

Table 5.9. Comparison of our approach with TTILSopt on Super instances

5.4.4 Discussion

One thing is clear from results presented in previous sections: our approach does not
outperform any of the approaches we compared it to. Let us now present our hypothesis
of why it is so.

As we said earlier, we measured few additional metrics besides the best-of-run fitness
and time. Namely the average, median and worst fitness in the population. After we
analyzed this data, we came to single conclusion: the algorithm as a whole behaved
very much like a random search.

We derived this conclusion from the way the algorithm worked. More specifically, we
observed how often the best-so-far fitness decreased and what were the values of mean
and median fitness throughout each run. What we saw was that at the very beginning
of each run, the best-so-far fitness decreased every couple of generations. That’s good,
that is how a genetic algorithm should behave. But soon after, the algorithm pretty
much stopped improving the best-so-far fitness and it remained the same for many
generations.

Interestingly enough, we cannot say it converged to that fitness as both mean and
median fitness were quite far from the best-so-far value and the population usually
consisted of individuals which had completely unique fitness values. Additionally, we
noticed the mean (as well as median) fitness practically didn’t change with passing
generations. That indicates that the population was diverse enough, but it was not
converging to the best-so-far fitness. Figure 5.1 illustrates this problem. It shows four
plots, each one depicting a progression of mean, median and best-so-far fitness during
one run of the algorithm over NL instances of 10 and more teams. Please note that the
x axis in all of the plots is in logarithmic scale.

For illustration purposes, we just picked one from 10 runs over each instance to make
these plots, but the trend was the same in all runs over all instances: the best-so-far
fitness decreased over time, exactly as it should, but the average and median fitness did
not. Instead, they oscillated around some specific value and remained more or less the
same during whole runtime of the algorithm.

41

5. Experiments .

10
0

10
1

10
2

10
3

6.6

6.8

7

7.2

7.4

7.6

7.8

8

8.2
xd10

4

Generationd[-]

F
itn

es
sd

[-
]

NL10

best-so-far avg median

10
0

10
1

10
2

10
3

1.25

1.3

1.35

1.4

1.45

1.5
x 10

5

Generation [-]

F
itn

es
s

[-
]

NL12

best-so-far avg median

a) Run on NL10 b) Run on NL12

10
0

10
1

10
2

10
3

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75
xd10

5

Generationd[-]

F
itn

es
sd

[-
]

NL14

best-so-far avg median

10
0

10
1

10
2

10
3

3.25

3.3

3.35

3.4

3.45

3.5

3.55

3.6

3.65

3.7

3.75
xd10

5

Generationd[-]

F
itn

es
sd

[-
]

NL16

best-so-far avg median

c) Run on NL14 d) Run on NL16
Figure 5.1. Progression of average, median and best-so-far fitness on instances NL10,

NL12, NL14 and NL16

That clearly indicates that the algorithm is unable to gradually shift the population
towards more promising regions. If it was able to do so, the mean (and median) fitness
would decrease over time as well.

We think that there is only one possible explanation for this behavior: the expan-
sion operator is too complex. By complex we mean that it is difficult to say how the
secondary representation will look like just by looking at the genotype. In case of
our expansion operator, it is not, in fact, easy. There are distances between teams
involved and portions of the secondary representation can be even constructed using
CSP solver... and that’s the problem.

If the interconnection between genotype and the secondary representation is intri-
cate, the GA component of the algorithm has hard time identifying promising parts of
genotypes in individuals. In fact, it might not be able to do so at all. In that case, it
mutates and recombines individuals “blindly” which results in random-like search. And
that is exactly what we observed.

This is caused by the fact that in our case, even slight change in genotype can have
(and usually has) noticeable effect on produced phenotype. That prevents crossover
operator from effectively combining parts of genotypes of two (or more) parents and it

42

. 5.4 Results and discussion

also prohibits mutation from searching local neighborhood of an individual via small
changes in genotype.

To support this conclusion, we conducted numerous additional short-termed tests
with various input parameters to verify that our results were not caused by poorly
set parameters. These experiments shown that our original experimental setup was
not the cause of this random-like behavior as the algorithm exhibited the very same
symptoms regardless of combination of input parameters. It didn’t work exactly the
same every time, of course, but it did always work according to the same general scheme:
it decreased the best-so-far fitness several times in the first couple of iterations, but
sooner or later it was not able to improve it anymore while the mean fitness was not
gradually getting lower.

We are certain that this problem degraded the overall performance of our algorithm
severely. And we also think that because of this, the algorithm, in its current state,
would not be able to reach noticeably better solutions even if provided with much longer
runtime.

We suspect that the shape of search space is rather complicated and according to our
observations, it consists of feasible regions separated by infeasible areas. This would
explain why the algorithm was able to decrease the best-so-far fitness several times in
the beginning: it just (almost randomly) explored the feasible part of the search space
it currently operated on, but once it explored it thoroughly, it was unable to cross any
of the infeasible regions to move further and explore other parts of the search space.
That again was caused by its random-like nature.

On the other hand, we must say that even though the expansion operator prevented
the GA unit of our algorithm from performing optimally, the operator itself worked
quite well. It was able to create solutions of reasonable quality from almost random
genotypes. The difference from state-of-the-art heuristics was consistently between 10%
and 15%. That is, in fact, not a bad result at all, as we can safely assume that the
local optimizer was not able to improve solutions generated by the expansion operator
more than slightly and most of the credit therefore goes to the expansion operator.
All the more so as the state-of-the-art approaches usually utilize extensive local search
while working with direct representation of the tournament which makes it substantially
easier for them to navigate through the search space.

43

Chapter 6
Conclusion and future work

This work aimed at proposing novel approach for solving the challenging Traveling
Tournament Problem.

We first reviewed current state-of-the art heuristics and discovered that most of
them are methods based on local search. We also reviewed few approaches based on
evolutionary algorithms.

Then, we proposed, implemented and evaluated a brand new metaheuristic approach
for solving TTP based on memetic algorithm.

The most interesting and important part of our algorithm is so-called expansion op-
erator which is a routine that transforms simplified representation (used by genetic
algorithm inside our method) to fully developed, valid TTP solutions. The process is
based on simple nearest-neighbor heuristic and uses some features of constraint pro-
gramming. In some cases it even employs a CP solver to generate portions of these
solutions.

We designed and conducted series of computational experiments and analyzed their
results. We concluded that the expansion operator itself works very well and is able
to generate TTP solutions of reasonable quality. On the other hand, the expansion
process seems to be too complicated for the genetic algorithm to work efficiently.

We discovered that due to intricate interconnection between genotype and trans-
formed representation of individuals, the GA part of our algorithm is incapable of iden-
tifying promising portions of genotypes in these individuals and that, in turn, makes it
behave very much like a random search. That severely impacts the overall performance
of the algorithm. But even with GA component working non-optimally, the algorithm
was able to find solutions only 10% to 15% longer than those found by current state-
of-the-art approaches.

Despite the fact that this algorithm didn’t outperform current state-of-the-art heuris-
tics, we still think that genetic algorithms are more than capable of solving TTP ef-
ficiently. We thing that with some improvements, it might as well be our algorithm
which would achieve great results on TTP.

But before that happens, there are few improvements to be done which plan for
future work:.define different primary representation and/or simpler expansion operator. limit usage of the expansion operator proposed in this work only to generating initial

population of individuals of high quality. explore possibility of working over individuals which would not represent strictly valid
TTP solutions (e.g. tournaments violating noRepeat and atMost constraints) and
examine suitable evaluation functions to be used to assign fitness to such individuals. introduce more sophisticated local optimizer to improve generated individuals even
further

44

References
[1] Kelly Easton, George Nemhauser, and Michael Trick. The Traveling Tournament

Problem Description and Benchmarks. 580.
[2] A. Anagnostopoulos, L. Michel, P. Van Hentenryck, and Y. Vergados. A simulated

annealing approach to the traveling tournament problem. Journal of Scheduling.
2006, vol. 9 (issue 2), 177-193.

[3] Pascal Van Hentenryck, and Yannis Vergados. Population-based simulated anneal-
ing for traveling tournaments. In: PROCEEDINGS OF THE NATIONAL CON-
FERENCE ON ARTIFICIAL INTELLIGENCE. 2007. 267.

[4] Luca Di Gaspero, and Andrea Schaerf. A composite-neighborhood tabu search
approach to the traveling tournament problem. Journal of Heuristics. 2007-2-28,
vol. 13 (issue 2), 189-207.

[5] Jin Ho Lee, Young Hoon Lee, and Yun Ho Lee. Mathematical modeling and tabu
search heuristic for the traveling tournament problem. 2006.

[6] Mustafa Mısır, Tony Wauters, Katja Verbeeck, and Greet Vanden Berghe. A new
learning hyper-heuristic for the traveling tournament problem. In: Proceedings of
the 8th Metaheuristic International Conference (MIC’09). Hamburg: Germany.
2009.

[7] David C Uthus, Patricia J Riddle, and Hans W Guesgen. An ant colony optimiza-
tion approach to the traveling tournament problem. In: Proceedings of the 11th
Annual conference on Genetic and evolutionary computation. 2009. 81–88.

[8] Fabrício Lacerda Biajoli, and Luiz Antonio Nogueira Lorena. Mirrored traveling
tournament problem: an evolutionary approach. 2006.

[9] Bong Min Kim. Iterated local search for the traveling tournament problem. Citeseer,
2012.

[10] A. Lim, B. Rodrigues, and X. Zhang. A simulated annealing and hill-climbing
algorithm for the traveling tournament problem. European Journal of Operational
Research. 2006, vol. 174 (issue 3), 1459-1478.

[11] KS Narendra, and MAL Thathachar. Learning automata: an introduction. 1989.
Printice-Hall, New York.

45

Appendix A
Experiment with mutations

ratioMofMimprovingMmutations ratioMofMworseningMmutations avgMdifferenceMhxM100q avgMdifferenceMoverMimprovingMmutations
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
NL4

MetricsM[-]

V
al

ue
sM

[-
]

BlockSwap
BlockShuffle
BlockSequenceSwap
GuidedBlockSwap
GuidedInBlockSwap

Figure A.1. Result of experiment with mutations for instance NL4

47

A Experiment with mutations .

ratioMofMimprovingMmutations ratioMofMworseningMmutations avgMdifferenceMhxM100q avgMdifferenceMoverMimprovingMmutations
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
NL6

MetricsM[-]

V
al

ue
sM

[-
]

BlockSwap
BlockShuffle
BlockSequenceSwap
GuidedBlockSwap
GuidedInBlockSwap

Figure A.2. Result of experiment with mutations for instance NL6

ratioLofLimprovingLmutations ratioLofLworseningLmutations avgLdifferenceLkxL100S avgLdifferenceLoverLimprovingLmutations
I0.2

I0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
NL8

MetricsL[I]

V
al

ue
sL

[I
]

BlockSwap
BlockShuffle
BlockSequenceSwap
GuidedBlockSwap
GuidedInBlockSwap

Figure A.3. Result of experiment with mutations for instance NL8

48

. .

ratioMofMimprovingMmutations ratioMofMworseningMmutations avgMdifferenceMhxM100q avgMdifferenceMoverMimprovingMmutations
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
NL10

MetricsM[-]

V
al

ue
sM

[-
]

BlockSwap
BlockShuffle
BlockSequenceSwap
GuidedBlockSwap
GuidedInBlockSwap

Figure A.4. Result of experiment with mutations for instance NL10

ratioLofLimprovingLmutations ratioLofLworseningLmutations avgLdifferenceLSxL100h avgLdifferenceLoverLimprovingLmutations
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
NL12

MetricsL[-]

V
al

ue
sL

[-
]

BlockSwap
BlockShuffle
BlockSequenceSwap
GuidedBlockSwap
GuidedInBlockSwap

Figure A.5. Result of experiment with mutations for instance NL12

49

A Experiment with mutations .

ratioLofLimprovingLmutations ratioLofLworseningLmutations avgLdifferenceLSxL100h avgLdifferenceLoverLimprovingLmutations
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
NL14

MetricsL[-]

V
al

ue
sL

[-
]

BlockSwap
BlockShuffle
BlockSequenceSwap
GuidedBlockSwap
GuidedInBlockSwap

Figure A.6. Result of experiment with mutations for instance NL14

ratioMofMimprovingMmutations ratioMofMworseningMmutations avgMdifferenceMhxM100q avgMdifferenceMoverMimprovingMmutations
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
NL16

MetricsM[-]

V
al

ue
sM

[-
]

BlockSwap
BlockShuffle
BlockSequenceSwap
GuidedBlockSwap
GuidedInBlockSwap

Figure A.7. Result of experiment with mutations for instance NL16

50

. .

51

Appendix B
CD contents

ROOT

...\thesis\

...\...\sources\

...\...\thesis.pdf

...\implementation\

...\...\sources\

...\...\TTPMA.jar

52

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	Tables/Figures
	Introduction
	Motivation
	Aims of this thesis
	Organization

	TTP --- Problem definition and related work
	Used terminology and background of the problem
	Problem definition
	Problem representation
	Criterion function
	Other variants of the TTP
	Mirrored Traveling Tournament Problem (mTTP)
	Relaxed Traveling Tournament Problem
	Non-Round-Robin Tournament Problem

	Related work
	Single-solution approaches
	Population-based approaches

	Genetic Algorithms
	Population and fitness
	Genotype
	Phenotype
	Fitness

	General scheme of GA
	Genetic operators
	Selection
	Crossover
	Mutation
	Replacement

	Memetic algorithms
	General scheme
	Local optimization techniques

	Proposed approach
	Introduction
	Representation
	GA component
	Initialization
	Fitness
	Selection
	Crossover
	Mutation
	Replacement

	Chromosome expansion
	General overview
	Domains
	Building the tournament

	Local optimization component
	Overview
	Local neighborhoods
	Incorporation of local search into the algorithm

	Implementation notes

	Experiments
	Test data
	Choosing parameters
	Population
	Selection
	Crossover
	Mutation
	Replacement
	Local search

	Experimental setup
	Structure of our experiments
	Experimental environment

	Results and discussion
	Observed metrics
	Results for NL instances
	Results for Super instances
	Discussion

	Conclusion and future work
	References
	Experiment with mutations
	CD contents

